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Abstract—Network Digital Twins (NDTs) offer a structured
framework for modeling, predicting, and optimizing wireless
networks. This paper presents a modular NDT implementation
based on the GreyCat platform, integrating graph-based data
models and external functional algorithms for indoor radio
coverage prediction. For the first time, we implement an
NDT system aligned with ITU-T Recommendation Y.3090,
covering both basic and functional model instantiation from
modular and interoperable abstract structures. We generated
a practical dataset using a software-defined radio (SDR)-based
OpenAirInterface5G setup, with a gNB and commercial UE
deployed in a controlled environment. This real-world dataset
was used to benchmark Gaussian Process Regression (GPR)
and Convolutional Neural Network (CNN) models for predicting
RSRP-based radio coverage. Our results show that CNN outper-
forms GPR in under-sampled conditions, and we demonstrate
how the modular architecture supports flexible model integration
and benchmarking. This work represents a significant step toward
practical, data-driven NDT deployments for wireless systems.

I. INTRODUCTION

The emergence of Network Digital Twins (NDTs) for
next-generation networks promises to transform the way
wireless infrastructures are designed, monitored, and optimized.
According to the ITU-T Y.3090 recommendation [1], an NDT
comprises two key modeling components: basic models, which
represent the current state of the network including topology,
configuration, and environment; and functional models, which
capture expected behaviors and enable simulation, prediction,
and control. This layered modeling approach ensures the NDT
can both describe and act upon the network it mirrors.

In this work, we explore how an NDT can be used to
infer radio coverage from sparse measurement data, enabling
predictive capabilities that support advanced planning, trou-
bleshooting, and optimization tasks. More specifically, we
extend a previously defined data structure and set of basic
models that enable the graph-based representation and storage
of network measurements and configuration data in a unified
format [2]. These models are implemented using the GreyCat
platform and are further enhanced with functional models that
allow predictive NDT capabilities.

The objective of this study is to demonstrate how a general-
purpose NDT, built on standardized and harmonized data
structures for next-generation networks, can be instantiated and
adapted for specific applications and scenarios. We showcase
the flexibility of the proposed NDT architecture in selecting
basic models that reflect the characteristics of the real network,
alongside functional models tailored to the targeted application.

This modular and adaptable design enables the creation
of multiple NDT instances, supports the testing of diverse
solutions, and facilitates model calibration. Ultimately, the
insights gained from these instances can be used to recommend
or implement changes in the real network, completing what
is referred to as the lifecycle of the NDT instance [3].

This approach is motivated by the lack of practical imple-
mentations that demonstrate how NDTs can be used in realistic
settings. While previous work outlined the architectural prin-
ciples for structured, AI-integrated NDTs [4], our contribution
lies in demonstrating the feasibility of such models through a
concrete deployment and measurement-based evaluation used
for predictive radio analytics.

The contributions of this paper are twofold:
1) We design the first implementation of an NDT aligned

with ITU-T Rec. Y.3090 [1], including both basic and
functional model instantiations for radio coverage predic-
tion.

2) We demonstrate a practical data-driven NDT system
using real-world measurements collected via a software-
defined radio (SDR)-based OpenAirInterface5G gNB and
commercial UE, operationalized within a graph-based
modeling platform (GreyCat).

The rest of the paper is structured as follows. Section II
reviews related work. Section III presents our system design.
Section IV describes the evaluation methodology and results.
Section V concludes the paper.

II. RELATED WORK

This section reviews prior work relevant to our approach
and identifies key gaps in the literature that we aim to address.

A. NDTs for next-generation networks

Standards bodies and industry consortia are rapidly em-
bracing NDTs. In 3GPP, SA5 (Service and System Aspects
Working Group 5) has launched Rel-19 studies on NDT
management and orchestration in TS 28.561 [3]. ETSI’s Zero-
touch network and Service Management (ZSM) working group
has likewise published technical reports such as GS ZSM-018
[5] on integrating Digital Twins (DTs) into zero-touch network
management. At the global level, ITU-R’s 6G study report
(IMT-2030) [6] identifies DTs as a key 6G use case, and ITU-T
Rec. Y.3090 [1] specifies requirements for 6G NDTs.

The NDT architecture, as presented in [1], is structured into
three distinct layers: the application layer, the DT layer, and the
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physical network layer. This layered design ensures modularity
and interoperability, where the application layer hosts services
and interfaces for users and external systems, the DT layer
provides the digital representation and analytical capabilities
of the network, and the physical network layer encompasses
the real-world infrastructure and data sources. Building on this
reference architecture, the European-funded project 6G-TWIN
proposed a functional architecture that further specifies the
responsibilities and internal components of each layer [4].
While the full architecture is beyond the scope of this paper,
we focus here on the DT layer, and more precisely on the
persistent representation of the network, which includes the
Unified Data Repository (UDR), basic models, and functional
models, addressing in part the management aspects of the
NDT

In our previous work [2], we detailed the design of the UDR
and the basic models, which are built following a structural
approach grounded in telecommunications standards such as
3GPP. However, that work did not address the development of
functional models or the instantiation process for both model
types. This paper addresses that gap by focusing on how real
data is extracted from the network and mapped into the basic
model using the GreyCat tool, enabling a live, structured digital
representation that serves as the foundation for higher-level
analytics and intelligent functions within the NDT.

B. Tools for NDT implementation

Graph-based modeling plays a central role in enabling the
structural and functional representation of NDTs. Existing
DT platforms such as Azure Digital Twin1, Eclipse Basyx2,
FIWARE [7], and Eclipse Ditto [8] offer modeling capabilities
suitable for industrial IoT and smart systems. However, they
often lack native support for dynamic graph structures or
seamless integration with evolving semantic models. Among
these, Azure DT supports graph-based representations and
schema definitions via Digital Twins Definition Language
(DTDL)3, but its proprietary nature and limited openness pose
integration constraints. Eclipse Basyx implements the Asset
Administration Shell (AAS) standard [9], offering hierarchical
modeling but limited flexibility for advanced graph topologies.
FIWARE, based on Next Generation Service Interfaces –
Linked Data (NGSI-LD) [7], promotes interoperability and
contextual data modeling, yet lacks built-in schema enforce-
ment and explicit graph abstraction.

GreyCat 4 is a framework specifically designed for building
large-scale DTs, offering a unique combination of imperative
object-oriented programming, persistent indexing, and scalable
memory management to support efficient model development
[10]. It relies on a temporal many-world graph database struc-
ture, enabling advanced features such as "what-if" scenario
simulation through database forking and time segmentation
with polynomial regression for compact data representation.

1https://azure.microsoft.com/en-us/products/digital-twins
2https://projects.eclipse.org/projects/dt.basyx
3https://azure.github.io/opendigitaltwins-dtdl/DTDL/v3/DTDL.v3.html
4https://greycat.ai/

GreyCat also supports embedded Machine Learning (ML)
capabilities, including Gaussian Mixture Models, for on-the-fly
micro-learning. These features align closely with the needs of
our work, enabling dynamic, time-aware graph representations,
real-time data processing, and seamless integration with
AI/ML-driven functional models.

C. Functional models and radio coverage prediction
Functional models in NDTs are designed to perform a wide

variety of tasks, such as prediction, optimization, and "what-if"
analysis. These tasks are often domain-specific such as radio
resource allocation in the Radio Access Network (RAN), or
network slicing in the core network. Complex applications like
teleoperated driving can be enabled by combining multiple
functional models in multiple domains, such as coverage
prediction followed by optimal radio resource allocation in
RAN, and optimal slicing in the core. As an initial step toward
enabling NDT-based applications, this work focuses on radio
coverage prediction as an example of a functional model.

Since exhaustive field measurements are impractical, modern
approaches rely on model-driven, data-driven, or hybrid tech-
niques to estimate full coverage maps from sparse observations
[11]. Historically, radio coverage prediction has been grounded
in physics-based models such as ray tracing and ray launching
[12], achieving high modeling accuracy. However, they are
computationally intensive and require detailed knowledge
of the environment, making them less feasible for large-
scale or dynamic deployments. On the other hand, empirical
models such as the 3GPP or COST pathloss models are
computationally efficient and widely applicable, but often
fall short in heterogeneous environments where propagation
conditions deviate from idealized assumptions [13].

In response to these limitations, recent research has in-
creasingly turned to data-driven approaches that learn signal
propagation characteristics directly from measurements [11].
These methods aim to reconstruct full coverage maps from
sparse observations by leveraging statistical inference or ML.
Notable examples include Kriging or Gaussian Process Re-
gression (GPR), which interpolate spatial measurements using
covariance kernels to model spatial correlations. Deep learning-
based techniques have also gained traction: Convolutional
Neural Networks (CNNs), such as RadioUNet [14], treat
coverage estimation as an image-to-image translation problem
and have demonstrated near–ray-tracing accuracy with signifi-
cantly reduced computational cost. For our implementation,
we choose two data-driven models with different complexities
and sensitivity to data variations, namely, GPR and CNN.

III. SYSTEM DESIGN

This section presents the NDT instantiation and lifecycle in
the ITU-T-based architecture, showing the data models struc-
tured within GreyCat. This is followed by the methodology
used to assess the functional integrity and capability of NDTs.

A. Data Models Instantiation
The ITU-T recommendations define basic and functional

models in broad terms, without providing implementation



Figure 1: NDT architecture and instantiation process

details. In our work [2], we propose interpreting these models
as structured libraries containing abstract data structures. These
libraries are developed in a standardized and harmonized way
to enable the creation of a universal, modular, and interoperable
NDT. This approach is illustrated in Figure 1.

Basic models are graph-based representations of the net-
work, capturing entities and their relationships. They encode
configurations, measurements, and topological information in a
format that is both flexible and extensible. Functional models
build on top of this foundation by representing behaviors,
optimization logic, and predictive capabilities. They often
incorporate data-driven methods such as AI and machine
learning to support intelligent decision-making. The UDR
serves as the centralized storage component, aggregating both
historical and real-time data from the physical network, sensors,
and external contextual sources. When historical data is used
to populate a basic model, the result is a time-indexed graph
that represents the evolution of the network state over time.

The process of instantiating an NDT involves populating the
basic model templates with data collected from the physical
network and selecting the appropriate functional models
based on the application and scenario. The lifecycle of an
instantiated NDT is governed by a dedicated management
component, referred to here as the NDT Management and
Orchestration (MANO). The NDT MANO is responsible for
creating, configuring, and maintaining NDT instances. While
it can be fully automated—enabling the realization of the ZSM
vision, we adopt a manual approach in this work. This allows
us to focus on the implementation aspects of the NDT itself.
Although manual configuration is suitable for limited-scale
scenarios, it is not scalable, and automation through MANO
must be addressed in future work.

To create an NDT instance, the MANO selects a set
of functional models aligned with the target application.

Concurrently, the basic models are populated with relevant
data from the UDR, ensuring consistency with the chosen
functional models. Calibration or training of the functional
models on specific basic models yields parameterized versions
tailored to the scenario. These trained models are stored in
the NDT’s data model repository, where they are labeled and
managed by the MANO. This allows for the comparison of
different algorithms or configurations and supports simulation-
based evaluation before applying the models to the live network
(only applicable for applications involving network control).

This concludes the description of the NDT instantiation
process and lifecycle. In the following section, we demonstrate
the implementation of these data models using GreyCat, which
enables the creation of basic model libraries and natively
supports various types of functional models.

B. Implementation in GreyCat

GreyCat serves as an implementation platform that notably
stores knowledge and data about the network in its graph
structure. It implements the data schema shown in Figure 2,
supporting the data collected from the network elements:
notably attributes and measurements from the New Radio Cell
(NRCell): the Centralised Unit (NRCellCU) and its related
Distributed Units (NRCellDU). Each NRCellDU is related to a
carrier BandWith Part (BWP), and Time or Frequency Division
Duplex (TDD / FDD) values. Most importantly it stores,
connected User Equipment (UE) location and Synchronization
Signal (SS) values.5 It focuses in this study on key radio
quality indicators, specifically: Reference Signal Received
Power (RSRP), Reference Signal Received Quality (RSRQ),
and Signal-to-Interference-plus-Noise Ratio (SINR).

Furthermore, GreyCat offers facilities to connect with
data sources (e.g., MQTT connectors) and importer of data
logs as well. One key aspect of Greycat is its capacity to
handle data sharding, which enables rapid access to data at
specific moments in time or space. This is achieved through a
node pointer that consumes less memory and facilitates swift
querying by efficiently navigating through the elements of the
pointed objects. For instance, when dealing with SS values,
we create a time node pointer. This pointer enables timely
access to the desired value of the signal. It also offers support
for prediction algorithms to extend coverage to unmeasured
locations and visualization of the resulting coverage maps.
It finally enables "what-if" scenarios to simulate network
changes.

Although GreyCat natively supports the implementation of
functional models, our current system design implements the
considered GPR and CNN algorithms externally in Python,
interfacing them with data stored in GreyCat. This architectural
choice does not affect the validity or performance of the NDT
evaluation, but it offered a more practical development path at
this stage. In the following, we present the evaluation method-
ology for NDTs and position our specific implementation on
the capabilities scale.

5The full GreyCat implementation is available in this repository:
https://github.com/6GTWIN



Figure 2: Excerpt of the basic model supporting our setup

C. NDT evaluation methodology

The assessment of our NDT is guided by the ITU-T
classification of NDT capability levels [15], which defines a
scale from Level 1 with limited to basic simulation tasks,
to Level 5, where the NDT autonomously manages and
reconfigures the physical network. However, this classification
concerns the NDT MANO, which we have deliberately
excluded from the scope of this work in order to focus on the
implementation of NDT modeling. In terms of basic model
integrity, our implementation currently corresponds to Level
3 [15]. This level enables the modeling of certain network
topologies such as those commonly found in radio access or
campus networks, and introduces limited logical relationships
between network components. Given the limited scope and
scale of the physical network considered in our use case,
this level of modeling is sufficient to support our targeted
functional models. The basic models encapsulate physical and
provisioning attributes of network devices, as well as selective
performance indicators. Regarding functional model integrity,
the implementation reaches Level 1, which supports partial
deployment of low-risk models, such as coverage estimation
or site planning. At this stage, the functional models operate in
an isolated environment without interacting with or modifying
the physical network. This design aligns with the objectives
of our current work, which focuses on model evaluation and
prediction rather than network control or automation.

Other important metrics include the NDT accuracy and
responsiveness based on data granularity and model quality.
These metrics depend mainly on the available data and the
data pipeline used for collection and harmonization, which
will be investigated in future works with more complete NDT
implementations. In our case, we aim to illustrate the modular
approach and interoperable approach of the ITU-T architecture
and the benefit of GreyCat in NDT modelling.

Details of the experimental setup, including data collection,
partitioning strategy, and evaluation metrics, are provided in
the following section.

IV. PERFORMANCE EVALUATION

In this section, we present a comprehensive evaluation of
the proposed NDT-based radio coverage prediction system.
We begin by detailing the measurement campaign conducted
in a controlled indoor environment, followed by a description
of the data collection setup and methodology. Subsequently,
we discuss the implementation of the prediction algorithms
and analyze their performance based on standard accuracy
metrics, comparing the predicted radio maps to ground-truth
measurements.

A. Data collection scenario and setup

The measurement campaign was conductedon a laboratory
floor of approximately 46 meters by 12 meters. A floor plan
is shown in Figure 3.

The spatial coordinates corresponding to each measurement
point were defined manually on the floor plan. These coordi-
nates were not available natively from the network interfaces
and were thus provided as external data inputs to the NDT.
This approach is necessary because current network standards
and taxonomies do not inherently provide location information
for radio measurements.

A Software Defined Radio (SDR) based gNB node was
deployed using OAIBOX which uses open-source OpenAir-
Interface (OAI) framework [16]. The OAIBOX was chosen
for its open-source flexibility, enabling full control of the 5G
gNB stack using OAI. It allows precise logging and real-time
customization, essential for measurement-driven experiments.
A summary of the gNB configurations and components used
are listed in Table-I.
Table I: Configuration Parameters and system components
used for data collection

Parameters Value Component Specifications
Duplexing Mode TDD gNB HW USRP B210
Frame Format DDDDDFUUUU gNB SW OAIBOX
Frequency 3809.28 MHz UE iPhone-14 Pro
Antenna Gain 3 dB Antenna Dipole
Bandwidth 40 MHz MIMO Mode 1x1

B. Data collection Methodology

To collect the measurement logs, the UE was connected to
the gNB. Upon a successful connection, the UE reports the
key measurement parameters to the gNB. The primary focus
for this study was on key radio quality indicators, specifically:
RSRP, RSRQ, and SINR. Given that our transmission band is
licensed for our dedicated use, interference levels are minimal.
As a result, RSRQ and SINR metrics are less critical in the
current context. Therefore, we focus on RSRP as the primary
metric for coverage mapping, as it directly quantifies the
received signal strength.

At each predefined location on the floorplan (see Figure 3),
the UE remained stationary for approximately two minutes,
during which measurement logs were continuously collected
at the gNB. This report is logged during the data collection
campaign for offline processing. A representation of such logs
is shown in Figure 4.



Figure 3: Floor plan of the indoor measurement scenario at LIST premises, showing the position of the gNB, the coverage area,
and the georeferenced measurement points used for model training and evaluation. Axes are in meters (m)

Figure 4: RSRP, RSRQ and SINR logs reported by UE and
displayed at gNB logs using OAI

Figure 5: Greycat internal view, collection of synchronization
signal for a UE at a given location.

Once collected, the logs serve as input to the GreyCat NDT
and are transformed to comply with the structural models
illustrated in Figure 2. Focusing on the SS element which
includes the RSRP values, measurements are represented as a
collection of timestamped objects, each linked to a specific UE
and location, as shown in Figure 5. At each timestamp, we can
visualize the measured values, as illustrated in Figure 6. This
temporal and spatial structuring enables efficient querying,
manipulation, and prediction of data behavior across both time
and location within the NDT.

C. Algorithms implementation

In the following, we provide a brief overview of the
algorithms implementation in our set-up.

Figure 6: Greycat internal view of the SS at a given time

1) GPR implementation:
• Input: (x, y) coords and corresponding mean RSRP.
• Kernel: Radial Basis Function (RBF) kernel.
• Training: Hyperparameters (length scale).
• Prediction: Model queried over a grid covering the area.
• Computation Cost: O(N3), manageable with small N .

2) CNN implementation:
• Input: 2D grid of mean RSRP values at given points;

missing values masked.
• Architecture: Simple CNN with two conv. layers.
• Loss Function: Mean Squared Error (MSE) computed only

on known points.
• Training: Trained directly on available measurements

without data split.
• Prediction: Full map inferred in a single forward pass after

training.

D. Numerical evaluation

The predicted RSRP maps for the chosen methods are
illustrated in Figure 7 and Figure 8, which visualize the
interpolated signal strength over the indoor area using the
trained models. These visualizations highlight the differences
in prediction smoothness, spatial sensitivity, and generalization
behavior between the two methods. We note that the first eight
measured locations, highlighted in yellow in Figure 3, were
used for training only. The remaining points are used for
testing.



Figure 7: Predicted RSRP map using GPR

Figure 8: Predicted RSRP map using CNN

Table II presents the quantitative results of the prediction
performance, computing the absolute prediction error between
the mean of true RSRP measurements at each location against
the predicted mean value from GPR and CNN models.

Both models are generally capable of capturing the spa-
tial variation of the RSRP values in line-of-sight (LOS)
areas. However, they exhibit reduced accuracy in non-LOS
(NLOS) conditions, particularly in locations 11 and 14, where
walls obstruct direct signal paths, highlighting the need
for environment-aware models or additional context data to
improve prediction fidelity in such conditions. Additionally,
points 10, 13, and 15 show higher prediction errors due to the
lack of nearby training data. Interestingly, CNN demonstrates
greater resilience in such sparse-data scenarios, compared to
GPR. The NDT enables model benchmarking and selection
prior to deployment. By using the same structured data models
from the GreyCat repository and associating them dynamically
with different functional models, the NDT supports on-demand
experimentation. This modular approach allows network
planners to evaluate model behavior in specific environmental
or data conditions—such as NLOS or sparse sampling, thereby
improving flexibility for testing, optimization, and deployment
decisions.

Table II: NDT accuracy using GPR and CNN

Location
index

True
RSRP
(dBm)

GPR
predicted

(dBm)

GPR
|error|
(dB)

CNN
predicted

(dBm)

CNN
|error|
(dB)

9 -105.81 -107.31 1.50 -107.98 2.17
10 -101.43 -107.67 6.23 -106.66 5.23
11 -100.89 -104.93 4.04 -106.97 6.08
12 -112.79 -111.29 1.50 -110.04 2.75
13 -105.25 -111.82 6.57 -108.96 3.71
14 -119.35 -114.95 4.40 -112.92 6.43
15 -109.72 -115.41 5.69 -112.94 3.23
16 -112.89 -116.80 3.91 -116.69 3.80
17 -114.84 -116.88 2.04 -118.39 3.55

V. CONCLUSION

This paper presented a practical implementation of a NDT
for indoor radio environments, focusing on the integration
of structured data models and predictive algorithms using
the GreyCat platform. The analysis of two algorithms was
conducted entirely within the NDT, which underscores a
key design advantage: the ability to benchmark and select
algorithms using the same underlying structured data and
models before committing to a deployment choice. Future
work will focus on implementing more general scenarios with
larger datasets, and on studying the automation aspects of
NDT MANO in relation to NDT instantiation.
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