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Abstract—Urban and industrial areas increasingly face
complex mobility challenges due to growing commuter demand,
infrastructure constraints, and the need for sustainable transport
solutions. However, there remains a lack of advanced digital
tools to support long-term planning and scenario-based decision-
making in such contexts. This paper addresses this gap by
presenting BISTWIN, a Mobility Planning Digital Twin (MPDT)
designed to support mobility planning in the Bissen industrial
zone, Luxembourg. BISTWIN integrates historical traffic data
with a high-performance simulation engine to evaluate the impact
of mobility interventions. The key contributions include: (i)
developing an MPDT tailored to the Bissen industrial zone, (ii)
validating the model with publicly available traffic data, and
(iii) demonstrating its decision support capabilities through two
“what-if” scenarios. BISTWIN offers a scalable framework for
sustainable transportation planning, providing valuable insights
for future MPDT applications in industrial and urban settings.

I. INTRODUCTION

In recent years, the concept of Digital Twins (DTs) has
gained significant traction across multiple domains, including
telecommunications, transportation, healthcare, agriculture, and
smart cities [1, 2]. The fundamental premise of DTs is to
create real-time digital replicas of physical entities, allowing
for extensive simulations and “what-if” scenario testing in
a controlled yet realistic environment before implementing
changes in the real system. This capability enables data-driven
decision-making, optimization of resources, and enhanced
efficiency in complex systems.

In the transportation domain, the concept of Mobility
Digital Twin (MDT) has emerged as a promising approach
to enhance traffic safety, optimize mobility infrastructure, and
improve transportation efficiency [3, 4, 5]. MDTs facilitate
real-time traffic monitoring, predictive analytics, scenario-based
evaluation, and decision support. Broadly speaking, MDTs can
be classified into two categories: operations MDTs, which
operate with real-time data to enable immediate feedback loops
between digital models and the physical world, and planning
MDTs, which leverage historical data and advanced analytics
to anticipate future mobility patterns and support long-term
decision making. Planning MDTs are sometimes referred to in
the literature as digital siblings [6].

Despite these advancements, real-life implementations of
MDTs remain scarce, and existing initiatives are often overly
simplified, lacking comprehensive integration with predictive
analytics and large-scale decision-support capabilities. The
challenge lies in developing MDTs that can address real-world
mobility issues while providing scalable and adaptable solutions
to accommodate evolving transportation demands.

A. Motivation and Research Gap

The industrial zone of Bissen, Luxembourg, presents a com-
pelling case for the deployment of a Mobility Planning Digital
Twin (MPDT). Currently, this area is home to approximately 60
companies and 2500 employees, with daily commuting patterns
that pose significant societal, economic, and environmental
challenges. A study and survey conducted by Schroeder &
Associates since May 2022 as part of a Mobility Management
initiative by the municipality identified several critical mobility
factors requiring urgent attention. These include enhancing pub-
lic and shared transport utilization, encouraging soft mobility
solutions, and preparing for electromobility adoption.

A conventional simulation approach alone is insufficient to
address these challenges as it lacks dynamic adaptability and
predictive power for long-term strategic mobility planning.
Therefore, a more robust MPDT approach that integrates
multiple digital tools and real data is necessary to provide
enhanced mobility planning and decision-making capabilities.

B. Our Contribution

To bridge this gap, we propose BISTWIN, an MPDT designed
for the industrial zone in Bissen, Luxembourg. The proposed
MPDT aims to offer a comprehensive mobility management
solution that facilitates traffic data processing, supporting
strategic planning and operational decision-making. Our main
contributions can be summarized as follows:

• We develop an MPDT tailored to the specific mobility
challenges of the industrial zone in Bissen, addressing
real-world transportation inefficiencies.

• We validate the MPDT using publicly available historical
traffic data to ensure its reliability and accuracy.

• We demonstrate the potential of the MPDT by analyzing
two “what-if” scenarios, showcasing its capability to
support mobility planning, infrastructure optimization, and
policy formulation.

By advancing the state of MPDT implementations, BISTWIN
represents a step forward in leveraging digital twins for
sustainable and efficient urban mobility planning. The insights
derived from this study can inform future MDT applications in
similar industrial and urban settings, contributing to the broader
adoption of planning DTs in transportation management.

II. BACKGROUND AND RELATED WORK

A. Terminology

The definition of DTs has been widely debated in the
literature. Some early definitions establish DTs as a mandatory
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combination of five dimensions: physical entities, virtual
models, services, data, and connections [2, 7]. In its most
common definition, a DT enables a real-time bidirectional con-
nection between physical entities and their digital counterparts,
facilitating both data flow and interactive control. Conversely, a
Digital Shadow only provides a one-way data transfer from the
physical to the digital world, primarily for long-term planning
and optimization.

When considering large-scale MDT implementations, real-
world deployments remain scarce to the best of our knowledge.
Abdelrahman et al. [8] conducted an extensive review of over
15 000 scientific publications focused on DTs in the built
environment, categorizing them into two major groups: High-
Performance Real-Time (HPRT) DTs, closely aligned with the
traditional DT definition, and Long-Term Decision Support
(LTDS) DTs, which emphasize data representation, validation,
and policy-driven decision-making. The latter category is
particularly relevant for urban and city-scale DTs.

Given this distinction, we define our solution as an MPDT
rather than a Digital Shadow or Sibling. Our approach aligns
with the LTDS framework, as it integrates scenario evaluation
and decision support for long-term mobility planning. Our
MPDT incorporates historical data to enable proactive decision-
making, making it a more suitable framework for addressing
the mobility challenges in the industrial zone of Bissen.

B. MDT state of the art

Recent studies have extensively reviewed DT applications,
architectures, and terminology in the transportation domain [6,
7, 9]. For example, Schwarz and Wang [7] review the existing
literature discussing the role of DTs in the simulation and
modeling of Connected and Automated Vehicles (CAVs). They
describe three different methodologies for creating virtual
testbeds, namely iterative-based, model-based, and DT-based.
They also describe examples of DTs for CAVs and identify
future opportunities and challenges. The role of DTs for CAVs
is also discussed by Ali et al. [9], but with a particular focus
on common issues in electric vehicle services.

Irfan et al. [6] provide a comprehensive overview of DT
technology applications in the Intelligent Transportation System
(ITS) domain. They also develop a hierarchical reference
architecture for an MDT system with a focus on scalability,
identify research challenges for each component of this system,
and provide future research perspectives for the development
and deployment of large-scale MDT systems for ITS.

Wang et al. [3] propose an MDT framework defined as an
AI-based cloud-edge-device platform for mobility services. The
proposed framework consists of three building blocks, namely
Human, Vehicle, and Traffic, which are modeled in the digital
space. The authors demonstrate the benefits of the proposed
MDT by implementing several mobility microservices and a
case study for personalized adaptive cruise control. Wang et al.
[5] propose a smart MDT platform to provide cloud services to
CAV users. In particular, they develop an MDT platform based
on cloud and edge computing, and design a CAV navigation
system that uses this MDT to navigate dynamic traffic events
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Figure 1. BISTWIN system architecture.

and improve overall traffic safety and efficiency. Yeon et al. [4]
propose DTUMOS, a DT designed for urban mobility operating
systems. This is a first attempt to build an MDT capable of
covering large-scale urban mobility systems. At the heart of
DTUMOS is a novel architecture that combines an AI-driven
estimated time of arrival model and a vehicle router algorithm
to achieve high speed without compromising accuracy.

While prior work has made valuable contributions to MDT
research, several limitations remain. Some studies focus on
vehicle-level simulations or real-time control of CAVs, with
limited attention to large-scale, long-term mobility planning [7,
9]. Others propose conceptual frameworks without demon-
strating their applicability in real-world settings [3, 5] or lack
integration of public transportation [4].

BISTWIN advances the state-of-the-art in several ways: (i) it
provides a validated, high-resolution model of a real industrial
zone; (ii) it includes private vehicles, public bus services, and
Electric Vehicle (EV) infrastructure, supporting future multi-
modal modeling; (iii) and it is designed explicitly for long-term
scenario evaluation rather than short-term control. By bridging
these gaps, BISTWIN offers a scalable and extensible MPDT
framework to support data-driven infrastructure planning and
sustainable mobility strategies.

III. BISTWIN SYSTEM ARCHITECTURE

A. High-Level Architecture

The BISTWIN MPDT architecture, illustrated in Figure 1,
is structured around multiple layers, each playing a crucial



role in ensuring seamless data integration, processing, and
decision support. The Physical Layer serves as the foun-
dation, representing real-world infrastructure, mobility data,
and historical datasets that feed into the system. Since this
architecture is designed for long-term planning rather than
real-time operations, the Physical Layer does not establish
continuous feedback loops with real-world entities but instead
relies on validated historical records to inform its models.

Above the Physical Layer, the Data Layer acts as the central
repository, housing structured datasets in PostgreSQL databases
and file-based formats like CSV and JSON. This layer serves
as the intermediary between raw data ingestion and higher-level
processing, ensuring consistency, accessibility, and efficient
querying of information.

The Middleware Layer acts as an intermediary between the
simulation and visualization. It facilitates seamless commu-
nication between those components using MQTT and ZMQ
message brokers, and aggregates raw simulation data in real-
time ensuring smooth and efficient visualization of key metrics.
The Modeling & Simulation Layer processes the mobility data,
creates the MPDT models, and runs scenario-based simulations
to evaluate urban planning strategies, such as public transport
optimization and electrification trends. Finally, the Visualization
& Interaction Layer provides a user-friendly interface, allowing
stakeholders to interact with the simulation results and assess
different planning scenarios.

B. Physical Layer
The input data provided by the Physical Layer is described

in Table I. Traffic infrastructure information is sourced from
OpenStreetMap and Geoportal, Luxembourg’s official platform
for governmental geodata and services. These sources provide
a detailed representation of the road network, including
intersections, road classifications, and public transport stops.
Additionally, mobility within the industrial zone is analyzed
using traffic counting data obtained from the “Administration
des Ponts et Chaussées” portal1. We identified five traffic
counters strategically placed on motorways and national roads
surrounding the industrial zone of Bissen, as detailed in Table I.
Further refining the model, local traffic surveys conducted
between March 15-21, 2023, by Schroeder & Associates and
the municipality of Bissen contribute granular insights into
movement patterns within the industrial zone.

To accurately represent vehicle composition, statistical data
from STATEC2, Luxembourg’s official statistics service, is
utilized. We extracted a dataset covering January to October
2023 that details vehicle registrations by type, including
private cars, heavy-duty vehicles, and the proportion of internal
combustion versus electric vehicles.

Public transport infrastructure and usage are integral to the
Physical Layer. Data from the regional public transport operator,
RGTR-Network, provides a comprehensive overview of avail-
able bus routes and schedules, allowing for an assessment of
public transport integration within the broader mobility system.

1https://travaux.public.lu/fr/infos-trafic/comptage.html
2https://statistiques.public.lu/en.html

Table I
INPUT DATA DESCRIPTION.

Data Type Description Provenance
Traffic infrastructure Road network, buildings, car park-

ing, bus stops, traffic lights, rivers,
and woods within the geographical
area of the industrial zone in Bissen.

OpenStreetMap,
Geoportal

National traffic coun-
ters

Counting of road traffic data from
five counters installed around the
Bissen industrial zone on motor-
ways and national roads: 495, 501,
511, 705, 710.

APC Portal

Bissen traffic coun-
ters

Counting of road traffic data from
two counters installed inside the
Bissen industrial zone between
March 15-21, 2023.

Schroeder & As-
sociates

Vehicle types Number of new registered vehicles
in Luxembourg per vehicle and
motor type between January 2023 –
October 2023.

STATEC

Bus timetable Bus timetable and itineraries for the
following lines: 119, 936, 937, 941.

Régime général
des transports
routiers (RGTR)

C. Data Layer

The Data Layer ensures the compatibility of Physical Layer
data with the Simulation Layer, acting as an intermediary
between the two. It consists of two main components: data
preprocessing and simulation output management. The first
component processes incoming data through three key steps:

• Data Wrangling – Raw data from various sources, such as
Excel sheets, web data, PDFs, and GPX files, is converted
into structured formats like CSV and JSON to ensure
consistency and usability.

• Data Filtering – Only the relevant data required for the
simulation of the industrial zone in Bissen is extracted,
removing unnecessary or redundant information.

• Data Mapping – Each data point from the Physical Layer
is mapped to its corresponding virtual representation,
ensuring accurate alignment with the Simulation Layer.

The second component manages the output data from
CityMoS, the mobility simulation platform. It maintains a 24-
hour rolling record of key mobility metrics – such as parking
occupancy, average vehicle speed, and traffic density – within
the industrial zone. This data is securely stored in a PostgreSQL
database, enabling efficient querying, analysis, and long-term
mobility insights.

D. Modeling & Simulation Layer

This layer is responsible for generating and instantiating the
MPDT models, executing “what-if” simulation scenarios, and
producing relevant output data. At its core, BISTWIN relies
on the City Mobility Simulator (CityMos) engine [10], a high-
performance, multi-core, agent-based, microscopic mobility
simulator and DT solution. CityMos was chosen over other
popular simulators (e.g., SUMO, MATSim, Aimsun) due
to its unique combination of features: it supports multi-
agent simulation at full microscopic scale, handles city-wide
networks with high spatial and temporal resolution, and natively



integrates heterogeneous transport modes, including private
vehicles, logistics fleets, and public transportation. Unlike many
existing tools, CityMos is natively multi-core and optimized
for parallel execution, enabling efficient simulation of large-
scale, high-fidelity scenarios. Moreover, it provides flexible
APIs for integration with external models, and a modular
architecture that aligns with the layered structure of our MPDT.
These features make CityMos particularly well suited for
planning-oriented DT implementations such as BISTWIN, where
scalability, detail, and extensibility are essential.

The BISTWIN simulated scenario spans approximately
60 km2, with the 20 km2 industrial zone positioned centrally
within the modeled area. The models simulate mobility patterns
over a 24 h period, representing a typical working day. CityMos
processes structured data from the Data Layer to instantiate
three key MPDT model categories: Infrastructure models,
which include representations of the road network, buildings,
car parks, EV charging stations, and traffic lights; Mobil-
ity models, which define zonal demands, traffic itineraries,
vehicles, and driver behaviors; and Public transportation
models, which encompass bus stops, depots, terminus stations,
schedules, and individual bus agents.

To improve the accuracy of the traffic representation, a
calibration process was conducted by defining 35 virtual zones.
Of these, 14 zones subdivide the industrial area, allowing for a
granular representation of traffic dynamics, while the remaining
21 zones represent external areas that interact with the industrial
zone. This calibration process involved the construction of an
Origin-Destination (O/D) matrix for the traffic flow, ensuring
that the simulated traffic flows are consistent with the real
data collected from Bissen and national traffic counters, as
referenced in Table I.

E. Middleware Layer

This layer serves as a critical intermediary between the
simulation and visualization layers. It provides an API to
static reference data, such as street network, car parks, or
bus stations. It also aggregates real-time simulation events
received via ZMQ and historical simulation events stored in
PostgreSQL. This enables replay and visualization of past or
pre-simulated scenarios, allowing for comparison of different
simulation outcomes. Moreover, built on Node-RED, the
layer provides a low-code environment that simplifies future
extensions, allowing for an easy implementation of additional
data aggregation flows to support new metrics. This ensures
flexibility and scalability as the system evolves.

F. Visualization & Interaction Layer

The BISTWIN architecture includes a web-based Visualiza-
tion & Interaction Layer, developed using React on a Node-
RED server, combining modular UI components with dual-
mode functionality. The framework supports real-time analysis
via HTTP/WebSocket protocols for live simulator data (e.g., ve-
hicle positions, dynamic graphs) and historical replay via HTTP-
based database queries, ensuring efficient resource utilization.
Performance optimizations include caching mechanisms and

(a) Dashboard capture

(b) CityMos UI capture

Figure 2. The two components of the Visualization & Interaction Layer.

Redux state management to maintain consistent data rendering
across modes.

The implementation uses color-coded zones (dynamically
scaled gradients) and ChartJS plots to display aggregated
metrics, while a unified Node-RED API fetches GeoJSON, ve-
hicle data, and time-framed statistics for processing via Redux
(see Figure 2a). Key features include interactive exploration
via zone filtering and time-based data handling, scalability
via adaptive color gradients for variable zone counts, and
business-focused tools for highlighting efficiency metrics. This
dual-mode architecture (live simulation or historical analysis)
provides an intuitive, scalable platform for analyzing urban
mobility patterns and improving decision-making by bridging
real-time and retrospective insights.

Finally, this layer includes the CityMoS UI, a high-
performance graphical user interface that enables real-time
visualization of the simulation state within a dynamic 3D
environment (see Figure 2b). The 3D frontend allows users
to analyze traffic on both macroscopic and microscopic levels,
leveraging built-in tools to assess overall flow while also
observing individual vehicle movements and driver behavior in
detail. Beyond traffic visualization, CityMoS enhances realism
by incorporating visual representations of active and passive
infrastructure elements, including parking facilities, buildings,
bus stops, depots, and rail stations.

IV. SCENARIO EVALUATION AND VALIDATION

A. MPDT Validation

To validate the MPDT models, we use the five national
traffic counters and two counters inside the industrial zone, as
described in Table I, considering traffic flow in both directions.
This results in a total of 14 measurement points. At each
location, we compare the synthetically generated traffic flow
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Figure 4. New planned office space with only access from national road N7.

(veh/h) obtained from our calibrated MPDT models over a
24 h period (T = 24h) against real-world observations. Let
sit represent the simulated traffic flow and rit the real traffic
flow at measurement point i and time t. The Mean Absolute
Percentage Error (MAPE) is then computed as follows:

MAPE =
1

T

T∑

t=1

|s
i
t − rit
rit

| ∗ 100 (1)

Figure 3 presents the empirical Cumulative Distribution
Function (eCDF) of the MAPE values for all 14 data points.
As observed, 70 % of the measurement points have an error
of less than 10 %, with a maximum error of 21.64 %. These
results confirm the accuracy of our calibrated MPDT model.

Notably, the four highest errors exceeding 10 % correspond
to the two counters within the industrial zone. This suggests
that incorporating additional measurement points within the
industrial zone could further refine the model’s accuracy by
capturing more localized traffic dynamics.

B. Scenario 1: Infrastructure Planing

This scenario evaluates the impact of future infrastructure
expansions by analyzing the addition of new office spaces
and corresponding parking facilities in the industrial zone.
The planned development features a single entry/exit point
connected to the national road N7 (see Figure 4). The
MPDT infrastructure models were updated based on actual
development plans provided by the municipality of Bissen to
reflect the anticipated changes.

To assess the effects on traffic flow around the entry/exit
point of N7, we modified the original O/D matrix to account for
the additional commuting demand. The newly introduced traffic
follows a normal distribution for both arrival and departure
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Figure 5. Average flow and speed vs scale trip intensity.

times, with morning inflows between 07:00 and 09:00, centered
at 08:00, and evening outflows between 16:00 and 18:00,
centered at 17:00.

Figure 5 presents the measured traffic flow and average
traverse speed on the lane entering the new development
from the northeast side, under varying levels of trip intensity.
In this scenario, a 0 % trip intensity represents the baseline
condition with no additional traffic. The results indicate that for
trip intensities between 0–200 %, vehicles maintain free-flow
speed. However, when trip intensity exceeds 400 %, the area
experiences full congestion. These findings provide insight into
the capacity limits of the planned infrastructure and its potential
impact on traffic conditions along N7, helping stakeholders
refine urban mobility strategies accordingly.

C. Scenario 2: New Electromobility Services

This scenario showcases BISTWIN’s capability to support
the design and evaluation of new electromobility services. In
collaboration with Emile Weber, a Luxembourg-based bus
company, we identified public transportation gaps within the
industrial zone. To enhance accessibility and encourage public
transport use, we simulate a new electric shuttle bus service,
connecting the Mersch train station (south of the industrial
zone) to key areas within the zone.

The electric shuttle service is synchronized with the regional
train from Luxembourg City to Mersch, operating from 05:00
to 22:30 with 30-minute intervals and 23 stops per round trip.
Each bus in the model is a 14-seat electric vehicle, accurately
reflecting an actual bus from Emile Weber’s fleet, including
size, passenger capacity, battery specifications, and charging
behavior. A new bus is deployed only when the existing fleet
cannot meet the schedule, allowing us to analyze both battery
consumption over time and the number of buses required to
sustain operations efficiently.

Figure 6 illustrates the State of Charge (SOC) over time for
each deployed bus. Initially, two buses operate in the morning.
However, by midday, an additional bus is required to maintain
the schedule. Later in the evening, around 21:00, a fourth
bus is deployed as the SOC of the earlier buses becomes
insufficient to complete the day. These findings suggest that
fleet deployment could be optimized by strategically charging
buses during low-demand periods, even before the battery is
fully depleted. Such an approach could sustain operations with
only three buses instead of four, improving energy efficiency
and resource utilization.
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V. LIMITATIONS OF THE PROPOSED MPDT

While the BISTWIN MPDT provides a robust framework for
mobility simulation and decision-making, its current implemen-
tation is primarily focused on transportation planning within
the Bissen industrial zone. To evolve into a multi-purpose DT,
several key aspects require enhancement.

First, interoperability is essential to integrate diverse data
sources and domains such as energy management, environ-
mental monitoring, and socio-economic analysis [11, 12, 13].
Standardized data exchange protocols and semantic frameworks
could facilitate cross-domain interactions, enabling the MPDT
to support broader urban planning efforts [14].

Second, real-time data integration remains a challenge, as the
current system relies on historical data for simulations [15, 16].
Incorporating IoT sensors, satellite imagery, and AI-driven
analytics would enable real-time monitoring and dynamic
decision support, enhancing the adaptability of the MPDT
to evolving urban conditions.

Lastly, achieving interconnected DT networks is crucial for
scalability and collaboration. By linking the BISTWIN MPDT
with regional and national DTs, the system could support
multi-modal transport coordination, smart grid management,
and climate adaptation strategies. Aligning with initiatives such
as Local Digital Twins (LDTs) from the European Commission
would further enhance interoperability and broaden the impact
of DT-driven urban development.

VI. CONCLUSION

In this paper, we presented BISTWIN, a Mobility Planning
Digital Twin (MPDT) designed to address the mobility chal-
lenges in the industrial zone of Bissen, Luxembourg. Our work
demonstrated how MPDTs can be used to support long-term
mobility planning with data-driven insights and scenario-based
evaluations. We developed a robust MPDT architecture that
integrates historical traffic data, mobility modeling, and high-
resolution microscopic simulations, providing a scalable and
adaptable framework for urban mobility management.

The validation process showed that our calibrated MPDT
models achieve high accuracy, with 70 % of the measurement
points exhibiting an error of less than 10 %, confirming its
reliability for decision-making. Furthermore, the infrastructure
planning scenario illustrated the potential impact of new
developments on existing road networks, identifying capacity

thresholds and congestion risks. The new electromobility
services scenario demonstrated how our MPDT can support
the introduction of electric shuttle services, optimizing fleet
deployment and energy efficiency.

Future work will focus on expanding our MPDT capabilities
by integrating real-time data sources and dynamic traffic control
strategies to further improve planning accuracy and operational
effectiveness.
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