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Abstract—Congestion control in 5G New Radio (NR) Vehicle-
to-Everything (V2X) sidelink communications is a challenging
task, mainly due to the distributed nature of the Semi-Persistent
Scheduling (SPS) algorithm used in Mode 2 operation. In this
paper, we define an adaptive algorithm to set SPS parameters
so as to minimize the average Age of Information (AoI) of
cooperative awareness messages. The algorithm is based on
insights gained from an analytical model of SPS, and its
performance is evaluated through simulations. We present initial
simulation results demonstrating the convergence and precision
of the proposed algorithm, which allows for the rapid attainment
of optimal values of Channel Busy Ratio (CBR) and AoI.

I. INTRODUCTION

5G New Radio (NR)-Vehicle-to-Everything (V2X) com-
munication has been designed to support advanced vehicular
applications and use cases that go beyond basic safety [1], such
as cooperative awareness, perception, and maneuvering [2].
In particular, 5G NR-V2X enables vehicles to extend their
perception and awareness beyond the Line of Sight (LOS),
i.e., the range of what local sensors such as LIDAR and
RADAR can detect. This can be achieved by periodically
exchanging messages containing real-time sensor data with
neighboring vehicles using Sidelink (SL) communication, a
feature introduced in 3GPP Release 16 that allows vehicles
to communicate directly without going through the network.

NR-V2X provides two operation modes for SL communi-
cation: Mode 1 and Mode 2 [3]. In Mode 1, SL resources
are scheduled by the gNodeB in a centralized way, which
assumes that all vehicles must be within the coverage of the
base station. In Mode 2, the vehicles use the sensing-based
Semi-Persistent Scheduling (SPS) algorithm to autonomously
select the SL resources in a distributed manner, allowing them
to communicate outside the coverage of a gNodeB. Multiple
access is based on resource chunks called Sub-Channels (SCs).
User data is transmitted over one or more SCs. The SC to be
used is initially selected at random from those detected as idle
(based on both sensing and signaling carried in the header
of SCs, the so called Sidelink Control Information (SCI)).
Once an SC is selected, it is kept for a randomized number
of times, and is periodically reused. The two key parameters
of this persistent randomized multiple access are the usage
period, i.e., the Resource Reservation Interval (RRI), and the
persistence mechanism, based on the Reselection Counter
(RC) and the persistence probability [1].

While NR-V2X Mode 2 has obvious advantages, it is
also much more difficult to control the congestion on the
communication channel compared to Mode 1, where it is
controlled by the gNodeB. 3GPP defines two metrics to
measure the channel congestion in NR-V2X SL, that is

Channel Busy Ratio (CBR) and Channel occupancy Ratio
(CR), but it does not define a specific congestion control
algorithm. Several recent works attempt to fill this gap [4]–[6].
For example, Mansouri et al. [4] provide a first analysis of the
impact of the Decentralized Congestion Control (DCC) [7] –
the mechanism proposed by ETSI to control the congestion in
ITS-G5 based V2X networks – on the performance of LTE-
V2X Mode 4 (the predecessor of NR-V2X Mode 2). They
evaluate the performance of the SPS scheduler in conjunction
with DCC, demonstrating that the application of DCC can
decrease performance. Toghi et al. [5] also conclude that the
simple use of DCC in LTE-V2X SL is not optimal and that
further analysis is required to improve the efficiency of the
congestion control. Choi et al. [6] instead propose an entirely
new DCC mechanism that uses Deep Reinforcement Learning
(DRL) to determine the packet transmission rate and control
the channel resource utilization. They show that the DRL-
based approach improves the Packet Delivery Ratio (PDR)
while keeping the CBR close to the target value.

However, these solutions primarily address system-level
requirements and overlook application-level concerns such
as the Age of Information (AoI) associated with message
packets. In fact, AoI has been proposed as a critical application-
level performance metric [8] that captures the freshness
of update information in V2X systems [9]. It quantifies
the environmental sensing gains in cooperative awareness
and collective perception, and its application extends to
the safety evaluation of automated driving in cooperative
maneuvering [10].

While most researchers prioritize the management of the
transmission rates or employ hybrid strategies to minimize
collisions, only a minority addresses congestion control from
the perspective of AoI [7], [11], [12]. In particular, Saad et al.
[11] address the congestion issues in 5G NR-V2X SL commu-
nication, focusing on scheduling and resource management for
advanced applications. They propose a DRL-based congestion
control scheme that optimizes Medium Access Control (MAC)
layer parameters, considering both system and application
requirements, notably AoI. The proposed mechanism is
shown to outperform the standard DCC in terms of PDR,
average AoI, throughput, and average CBR. Dayal et al. [12]
address congestion indirectly by proposing two RRI selection
algorithms to improve the tracking error in cooperative
awareness applications. They show that combining SPS with
either of these approaches outperforms the conventional SPS
in all the considered scenarios.

However, none of these previous studies investigate the
impact of persistence on congestion control in 5G NR-V2X
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SL communication. In this paper, we leverage the model
defined in our previous work [13] to design an autonomous
adaptive algorithm that drives the persistence probability and
RRI to values that minimize the average AoI, given the node
density. In particular, we identify the optimal system working
point that leads to minimal mean AoI, as a function of the
persistence probability P and the RRI. We also characterize the
optimal working point by analyzing the properties of relevant
system quantities, that are then exploited to define a distributed
algorithm that drives P and RRI towards the optimal values.
We exploit the model defined in [13] to gain insight into the
interplay of the key parameters P and RRI and the mean
AoI. This insight gives a solid ground to derive the distributed
algorithm. Finally, we provide a preliminary evaluation of
speed of convergence and accuracy of the algorithm, proving
that the distributed algorithm is robust and effective.

As for the rest of the paper, the analysis of the AoI as a
function of persistence probability and RRI, the identification
of the system working point that minimizes the mean AoI, and
the definition of the parameter adaptation algorithm is given
in Section II. Numerical results are provided in Section III.
Final remarks are presented in Section IV.

II. MODEL OUTLINE AND ADAPTIVE ALGORITHM

Consider a set of N nodes sharing a 5G NR-V2X commu-
nication channel used according to Mode 2 [14]. We aim at
identifying the RRI and persistence probability that minimize
the mean AoI. To this end we resort to a simplified model
that retains the essential characteristics of the SPS algorithm.

We make the following assumptions:
1) Nodes hear each other (no hidden nodes).
2) All nodes use the same RRI.
3) Only broadcast traffic is considered, so no ACK is

provided and no retransmission is scheduled.
4) Nodes generate a new message for each RRI.
5) The SC is sized to carry one complete message, i.e., one

Transport Block (TB) plus its associated SCI (both first
and second stage) fit into one SC.

6) The RC is drawn from a Geometric probability distribu-
tion, i.e., P(RC = j) = cj−1(1 − c), for j ≥ 1. Note
that the mean RC is equal to RC = 1/(1−c) ≥ 1, hence
c can be identified as c = 1− 1/RC.

7) The number of nodes N is less than the number K of
SCs available in one RRI.

Assumptions 4 and 5 correspond to the best situation for the
SPS algorithm, since message generation is exactly periodic
and each new message fits exactly into the reserved resource.
Note also that as a consequence of Assumption 7, there is
always at least one idle SC in each RRI. Assuming a Geometric
Probability Distribution Function (PDF) for the RC is required
to derive a Discrete Time Markov Chain (DTMC) model of
the system in [13]. The mean RC is adjusted so as to match
the average RC setting prescribed by the standard [1]:

RC =
C · (RCmin +RCmax)

2
(1)

with RCmin = 5, RCmax = 15 and

C = max

{
1,min

{
5,

RRIth

RRI

}}
(2)

with RRIth = 100ms.
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Figure 1. Characteristics of the communication channel. (a) Channel evolution
with adaptive RRI algorithm; (b) Mean of AoI as a function of the probability
of persistence P and of the RRI (in ms).

Let K be the number of SCs available in the selection
window, i.e., in one RRI. Let nSC denote the number of SCs
in a time slot and Ts the time slot time (1 ms with baseline
numerology)(structure is shown in Figure 1a). Then, it is

RRI = Ts

⌈
K

nSC

⌉
(3)

In each RRI, each node uses one SC to broadcast its
message. A node selects an idle SC and persists using it
for a number of times equal to its value of RC. Once RC is
counted down to 0, the node decides to draw a new value
of RC and persist on the same SC with probability P . With
probability 1− P , the node switches to another idle SC and
draws a new value of RC.

According to our model assumptions, a node that decides to
jump to a new SC selects the target SC uniformly at random
among all those SCs that are deemed to be available in the
previous RRI. Available means that they have sensed to be
idle or that signaling in the SCI tells that the node currently
using the SC is using it for the last time and it will jump to
another SC in its next RRI.

It is shown in [13] that the mean of the AoI can be evaluated
numerically, once the DTMC model is solved resorting to a
mean field approximation and a fixed point equation is solved.
The result is a function of the three model parameters N , K,
and q. The parameter K is directly dependent on the RRI, as
seen from Equation (3). The parameter q is directly related to
the persistence parameters of SPS, namely q = (1− P )/RC,
where RC is given in Equations (1) and (2).

Figure 1b shows the mean AoI E[A] as a function of P
and RRI (expressed in ms) for N = 100. It is apparent that
there is a global minimum of the AoI. More insight is gained
by looking at Figure 2. Figure 2a shows the mean AoI as a
function of the system load ρ = N/K (which is implicitly a
function of RRI, through K) for N = 100 nodes. The solid
line curve is obtained by choosing the persistence probability
value P ∗ that minimizes the mean AoI for each value of ρ.
The dashed line curve correspond to P = 0 (no persistence).

Figure 2b illustrates the probability of success, i.e., the
probability that a message sent by a node is correctly decoded
by other nodes. In the considered model setting, this is
equivalent to saying that no collision occurred, i.e., the node
was the only one transmitting in its SC.

The plots in Figure 2 highlight that persistence brings
about a substantial performance gain. It also shows that
E[A] has a minimum as a function of ρ. Since we keep
N fixed, ρ is varied by changing K, i.e., by changing the
value of RRI. For large values of RRI (large K, hence low
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Figure 2. Performance as a function of the system load ρ = N/K, with
optimal persistence probability for each value of ρ and for N = 100. (a)
Mean AoI; (b) Probability of success.
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Figure 3. Characterization of the optimal working point as a function of N .
(a) Optimal P as a function of ρ. (b) Probability to find an empty SC π0

and system load ρ at the optimal working point as a function of N = 100.

ρ values), the mean AoI increases since nodes are slack in
sending updates, even if the probability of success is very
high, thanks to low load. On the other hand, for small values
of RRI (hence small K and large ρ values), congestion in
the radio interface causes a significant amount of collisions,
thus impairing the effectiveness of periodic messaging. As
a results, mean AoI deteriorates. The minimal mean AoI is
struck for an intermediate value of ρ, hence of RRI.

To gain further insight into the optimal working point
to attain minimal mean AoI, we introduce Figure 3. Here,
Figure 3a show the optimal value of the persistence probability
P as a function of ρ for a fixed number of nodes N = 100.
Figure 3b illustrates the values of the probability of detecting
an empty SC, π0 and of the system load ρ, evaluated at
the optimal working point, i.e., for the optimal persistence
probability and the optimal value of RRI. As for the probability
of persistence, it turns out that it should be as large as possible
(0.8, according to the standard) when we set the system load
around the optimal value (≈ 0.6). The plots in Figure 3b
shows that, when driving the system to operate so that the
mean AoI attains its minimum, the probability of an empty
SC π0 and the system load are both close to constant values,
irrespective of N , apart from the first few values of N .

Inspired by the results above, we define the Algorithm 1,
that each node runs autonomously. The logic of the algorithm
can be summarized as follows. The RRI is adapted so as to
drive the fraction of idle SCs towards π∗

0 , The quantity e0
measures the distance between the current estimate of this
fraction, p0, and the target value π∗

0 . The step size of the
adaptation of RRI shrinks as the current RRI R tends towards
the optimal value corresponding to p0 = π∗

0 , hence e0 = 0. To
speed up convergence, the persistence probability P is initially
set to 0. Then P grows towards the maximum possible value
(which has been verified to lead to optimal mean AoI in the
first part of this section) as the convergence error e0 becomes
smaller and smaller. The convex sum in the last line of the
algorithm averages the adapted value of the RRI R with the

average of the RRI of neighbor nodes, Rnei. Those values
can be read in the SCIs correctly decoded by the considered
node over the last W SCs. This final step of the algorithm
is key to avoid that RRIs of neighbor nodes scatter over a
widely spread out range, while achieving close to the target
fraction π∗

0 of idle SCs. The value R̃ can be interpreted as
the node’s individual opinion on the current best RRI to get
a minimal AoI, while Rnei is the collective opinion of node’s
neighborhood. Following R̃ drives the system towards the
optimal RRI value. Anchoring to the average of neighbors’
RRIs keeps the flock together, avoiding a wide spread of RRI
values of neighboring nodes. Balancing the individual and the
collective points of view leads the overall system to settle
around a unique RRI value that attains minimal mean AoI.

The entire algorithm can be rephrased in terms of CBR,
observing that CBR = 1−π0. Ultimately, the RRI is adjusted
so as to drive the CBR towards the optimal value CBR∗ =
1− π∗

0 , corresponding to minimal AoI.
In the algorithm we set Pmax = 0.8, ∆R = 40 subframes,

β = 0.25, π∗
0 = 0.412, RRImin = 1 subframe, RRImax = 1000

subframes, W = number of SCs in RRImax. Moreover, the
upper and lower limits for convergence to π∗

0 are p0,sup =
π∗
0(1 + µ) and p0,inf = π∗

0(1− µ), with µ = 0.03.

III. SIMULATION RESULTS ANALYSIS

In this section, we examine the results of MATLAB-
based simulation for the proposed algorithm in scenarios
with different numbers of nodes, N ∈ {25, 50, 100, 200}.
We analyze the evolution of RRI and time-averaged AoI
while operating the proposed algorithm. In the simulation, the
initial value of RRI is randomly assigned. The value of RC
is dynamically determined in accordance with the standard.

Time-averaged AoI is defined as the current average of the
instantaneous age of data collected by nodes from other nodes.
Formally, it is

⟨A⟩(t) = 1

t

∫ t

0

AoI(τ) dτ (4)

Figure 4 illustrates the evolution of RRI for randomly
selected nodes. We can observe the operation of the proposed
adaptive algorithm in achieving an optimal level of RRI and the
corresponding optimal CBR. The stepwise change in RRI is
explained by the time quantization into subframes. We observe
a similar trend in Figure 5, depicting the RRI convergence

Algorithm 1 Algorithm for the adaptation of RRI.
R← RRIth, P ← 0
if New SC must be selected then

K0 ← # of idle SCs out of the last W SCs
p0 ← K0/W

e0 =
max{0,π∗

0−p0}
π∗
0

+
max{0,p0−π∗

0}
1−π∗

0

P ← Pmax(1− e0)
if p0 > p0,sup then

R̃← R− e0∆R
end if
if p0 < p0,inf then

R̃← R+ e0∆R
end if
R̃ = max{RRImin,min{RRImax, R̃}}
Rnei ← average RRI of decoded SCIs over the last W SCs
R← βR̃+ (1− β)Rnei

end if
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Figure 4. RRI evolution for random sample node over the time. (a) N = 25
(b) N = 200.
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Figure 5. RRI convergence for all nodes over time with the adaptive algorithm.
(a) N = 25. (b) N = 200.

of all nodes in the network. The utilization of the proposed
adaptive algorithm enables rapid attainment of an RRI value
nearing the optimal RRI level (convergence occurs within
approximately 10 s). To be noted that the proposed algorithm
demonstrates high accuracy across various numbers of nodes
utilized in the simulation.

Figure 6 illustrates the change in time-averaged AoI over
time. The obtained results demonstrate that alongside RRI, AoI
convergence occurs rapidly and accurately (correlating entirely
with the RRI convergence rate). It is evident that the utilization
of the adaptive algorithm minimizes AoI. However, occasional
spikes in time-averaged AoI are observed. These spikes are
attributed to the imperfections of the SPS algorithm and
potential collisions when multiple nodes simultaneously select
new resources. Clearly, the frequency and duration of spikes
due to collision occurrences increases with the augmentation of
nodes in the system (as depicted in Figures 6a and 6b). To be
noted that once the adaptive algorithm reaches convergence, it
sets the highest possible persistence probability to maintain the
optimal point for as long as possible. Nevertheless, situations
arise where nodes remain in a collision state for an extended
period due to the high persistence probability. Gradually, as
nodes exit the collision state, we observe a gradual reduction
in time-averaged AoI since AoI is utilized as a metric after a
node exits the collision state.

IV. CONCLUSION

In this paper, we presented an initial investigation into
minimizing AoI through dynamic control of persistence
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Figure 6. Time-averaged AoI convergence for all nodes over time with the
adaptive algorithm. (a) N = 25. (b) N = 200.

probability and RRI. We identified optimal system config-
urations and proposed a distributed algorithm to achieve them,
rooted in a simple yet accurate analytical model. The results
underscore the significance of RRI and persistence values on
AoI, prompting the development of an adaptive algorithm for
DCC. Through simulations, we validated the effectiveness
of our approach in quickly attaining optimal CBR and AoI
values while addressing accuracy concerns. Future research
directions include exploring more complex scenarios and
further refining the proposed adaptive algorithm to enhance
system performance in realistic scenarios.
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