
A Co-Simulation Approach of Blockchain Connected
Last-Mile Delivery Using Autonomous Robots

Oussema Gharsallaoui∗, Damien Nicolas∗, Marie-Laure Watrinet∗, and Ion Turcanu∗
∗Luxembourg Institute of Science and Technology (LIST), Luxembourg

{ oussema.gharsallaoui, damien.nicolas, marie-laure.watrinet, ion.turcanu }@list.lu

Abstract—The integration of autonomous robots in last-
mile delivery systems raises technological challenges such as
communication, navigation, and cybersecurity. Blockchain offers
a secure and transparent solution, but its scalability is a concern.
In this paper, we present a co-simulation framework that combines
the SUMO mobility simulator with the Ethereum Proof of Stake
(POS) blockchain. We evaluate the impact of increasing the
number of autonomous robots on blockchain performance, using
Transaction Execution Time (TET) and Transaction Finality Time
(TFT) as metrics. Our results demonstrate the feasibility and
challenges of using blockchain in autonomous delivery systems.

I. INTRODUCTION

The growing trend of using autonomous robots in last-mile
delivery raises technological concerns such as communication
and connectivity, navigation and localization, and cybersecu-
rity [1]. This encourages the adoption of novel technologies,
such as blockchain, due to its characteristics. Indeed, blockchain
provides a secure, reliable, and transparent system for sharing
data among multiple parties. However, blockchain is also known
to still have some scalability challenges [2].

In this context, evaluating the scalability limits of blockchain
integration with autonomous robots for last-mile delivery use
cases is critical. However, conducting experiments in real-world
urban mobility scenarios is associated with high costs and safety
risks. Therefore, a popular approach among researchers is to
first evaluate proposed solutions through simulations before
implementing them in real-world situations [3]. To the best
of our knowledge, existing urban mobility simulators, such
as SUMO [4] and PTV [5], do not incorporate blockchain
technology into their simulation framework. Therefore, it is
necessary to implement the blockchain simulation component
separately. This paper fills this gap by introducing a user-
friendly simulator that allows users to run an integrated SUMO
simulation of autonomous robots for last-mile delivery, which
is bilaterally connected to a blockchain.

In summary, the contribution of this paper is twofold. First,
we propose a co-simulation approach that couples the open-
source mobility simulator SUMO with the Ethereum Proof
of Stake (POS) Blokchain. This enables realistic, large-scale
simulations of blockchain-enabled mobility solutions. Second,
we demonstrate the potential of the proposed solution by
examining the impact of increasing the number of autonomous
robots in last-mile delivery on the performance of the Ethereum
POS Blokchain. To achieve this goal, we use two evaluation
metrics: (i) Transaction Execution Time (TET), which is defined
as the time required for a transaction to be accepted and stored

Traci server

Traffic
Simulator

Local Ethereum
Network

Consensus
Layer

Execution
 Layer

Smart
Contracts

UI

Orchestrator

BlockchainOrch

SumoOrch

Figure 1. The architecture of the proposed co-simulation approach.

on the blockchain, and (ii) Transaction Finality Time (TFT),
which refers to the point after which it is impossible to tamper
with the transaction.

II. SYSTEM DESIGN

This section presents the system design of the proposed
co-simulation framework. As shown in Figure 1, the platform
consists of three main components: (i) the traffic simulator, (ii)
the local Ethereum network, and (iii) the orchestrator with its
associated User Interface (UI). The contribution of this paper
includes the orchestrator and the UI (gray blocks in Figure 1).
An illustration of the UI is shown in Figure 2.

The role of the traffic simulator is to run the urban mobility
part of the simulation using the Traffic Control Interface (TraCI)
server as defined in [6]. TraCI allows to retrieve real-time data
from the simulated autonomous robots and to modify their
behavior in real time.

The role of the local Ethereum network is to run Ethereum
smart contracts. It consists of two layers: the execution layer
and the consensus layer. Communication between these two
layers is performed through a local Remote Procedure Call
(RPC) connection. The orchestrator calls the execution layer
to store the generated transactions. The execution layer first
verifies the transactions and passes them to the consensus
layer for final verification and validation. Once validated, the
transactions are stored on the blockchain.

The main role of the orchestrator is to build Ethereum
transactions containing real-time data collected by the traffic
simulator and send them to the local Ethereum network. The
orchestrator is a client of the TraCI server and is connected to
the local Ethereum network via JSON RPC APIs.

In our particular case, the orchestrator manages a three-
legged last-mile delivery scenario using autonomous robots. In

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

6th Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS 2024)

Figure 2. An illustration of the UI.

the first leg, a delivery truck transports N autonomous robots
from the company’s warehouse to a designated parking area
called the cluster hub. In the second leg, each robot exits
the truck and begins its journey to deliver packages to end
customers. In the third leg, the truck waits for all N robots to
return and then transports them back to the warehouse.

Figure 3 illustrates the second leg of this scenario, showing
the interactions between stakeholders. The orchestrator gen-
erates transactions for the steps 2, 4, 6, 7, 8, 12 and 14. In
the event of a conflict in step 9, the orchestrator generates a
report explaining the details of the conflict based on the data
collected from the transactions sent to the blockchain.

III. IMPLEMENTATION

The simulation environment runs on a virtual machine config-
ured with 128 GByte of RAM, 96 CPUs, and 100 GByte of disk
space. To run the local Ethereum network, we have installed
the following binaries: Geth version 1.13.15, Lighthouse and its
CLI tool version 5.1.3. In addition, Node.js version 18.20.3 is
used to execute scripts to migrate the local Ethereum network
from Proof of Authority (POA) to POS. Python version 3.8
and SUMO version 1.20.0 are installed to run the user interface,
orchestrator Python scripts, and mobility simulation.

Four smart contracts are developed with Solidity v8.0 for
the considered scenario: (i) The CUSTOMER smart contract
is used to store the data related to customers on the Ethereum
blockchain; (ii) The TRUCK DRIVER smart contract is used
to store the data related to the truck driver; (iii) The ROBOT
smart contract is used to store the data related to autonomous
robots; (iv) The TRIP smart contract is used to store and share
the data related to parties involved in the delivery process.

A. Orchestrator implementation

The orchestrator consists of a set of shell and Python scripts
that are responsible for running the simulation. It initializes all
the simulation models and smart contracts with the appropriate
values, sets/gets their inputs/outputs, and coordinates their
progress over the simulated time.

In a first step, the orchestrator starts the simulation by
launching a local Ethereum POS network using a shell script.
The local Ethereum POS network is a customized version

ROBOT

Send location & status info
(gps, battery level, speed)

 Reach its destination

Send location & status info
(gps, battery level, speed)

Send noti�cation message

Con�rm delivering the parcel

2

3

5

6

11

13

4

CUSTOMERTRUCK DRIVER

Launch the robot to reach
its destination

Send noti�cation message

Start the route

 Reach its destination

Send location info (gps)

Send noti�cation messageSend noti�cation message

Ask the robot to come back

12

1

10

14

8

Send noti�cation message

9 Check con�ict

Con�rm receiving the parcel

 Reach its destination

7

Figure 3. The UML sequence diagram of last-mile delivery scenario.

of the open source project in [7]. It takes as input the
number of nodes N , the number of seconds per slot S (block
period of the consensus layer), and the number of seconds
per ETH1_Block_Time T (block period of the execution
layer). The orchestrator starts: the execution layer consisting
of N Geth nodes, and the consensus layer consisting of
N Lighthouse beacon chain nodes with their associated N
Lighthouse validator clients. Each validator client is connected
to a beacon chain node to validate the blocks on the beacon
chain. Each beacon chain node is connected to a Geth node to
stay updated on transactions executed in the execution layer.

In a second step, the orchestrator deploys the smart contracts
to the local Ethereum network and retrieves the addresses of
the smart contracts from the Ethereum blockchain as proof
of successful deployment. In a third step, the orchestrator
runs SUMO and its TraCI server. It uses two Python modules,
SumoOrch and BlockchainOrch, to couple SUMO and the local
Ethereum network.

The SumoOrch module provides reusable functions to
dynamically add new robots and trucks to SUMO in real time
and assign them to their routes based on data provided by
the orchestrator. It allows to obtain real-time data from the
robots and trucks, such as GPS location and battery status. It is
developed based on the TraCI API and is also responsible for
starting a TraCI server and connecting to the SUMO simulator.

BlockchainOrch provides reusable functions to interact in
real time with the smart contracts deployed on the local
Ethereum network. This module is developed based on Web3
API. It checks if the local Ethereum network is already running
and available for connection. In case of a connection issue to
the local Ethereum network, the module shows an error log.

0 5 10 15 20 25 30
Transaction Number

0

20

40

60

80

100

Ti
m

e
(s

)

TET
TFT

(a) 4 robots, 1 s

0 5 10 15 20 25 30
Transaction Number

0
50

100
150
200
250
300
350

Ti
m

e
(s

)

TET
TFT

(b) 4 robots, 4 s

0 10 20 30 40 50
Transaction Number

0
50

100
150
200
250
300
350
400

Ti
m

e
(s

)

TET
TFT

(c) 10 robots, 4 s

Figure 4. TET and TFT when running varying number of robots and seconds per slot.

Finally, the orchestrator calculates the TET and TFT of each
transaction generated by the simulation. TET is defined as
the time difference between the moment the transaction is
sent to the execution layer and the moment we receive the
confirmation back from the execution layer. TFT is the time
that elapses from the sending of a transaction to the point where
the transaction can be considered to be settled and therefore
cannot be altered, reversed, or canceled.

B. Results

For simplicity, we consider the number of seconds per slot
to be equal to the number of seconds per ETH1_Block_Time.
Figure 4a shows the results of the simulation using four
autonomous robots, with the time slot fixed at 1 s. We can
see that the total TET is stable at 1 s, while the TFT varies
between 64–95 s, i.e. the receiver has to wait about 1.5 min to
make sure that the transaction is immutable.

If we increase the time slot to 4 s (see Figure 4b), i.e., to
give nodes more time to register more transactions per block,
we see that the TET remains stable around 4 s, but the TFT
increases to 256–380 s. This means that our blockchain is still
stable with four robots, but the receiver has to wait up to 6 min
to make sure the transaction is immutable.

Finally, Figure 4c shows the results of the simulation when
we increase the number of autonomous robots to 10 and keep
4 s as the time slot. We see a perturbation in the TET, as some
of the transactions took longer than expected (one transaction
execution took 50 s, while another transaction execution took
100 s). This is most likely due to synchronization issues between
the blockchain nodes. However, increasing the number of robots
does not affect the TFT, which is still between 256–380 s,
similar to Figure 4b.

These results confirm that there is a trade-off between the
efficiency of the blockchain, in terms of registered transactions
per block, and the time a user would have to wait before a
transaction becomes irreversible. In particular, while increasing
the number of seconds per slot is beneficial in terms of
blockchain storage efficiency, it has a negative impact on TFT.
On the other hand, increasing the number of robots has very
limited impact on the TFT, but it has a negative impact on the
blockchain stability.

IV. CONCLUSION

In this paper, we presented a co-simulation framework that
combines the SUMO mobility simulator with the Ethereum
POS blockchain. The proposed solution is applied in a last-
mile delivery system and used to evaluate the blockchain
performance when increasing the number of autonomous robots.
The orchestrator allows to highlight the TET and TFT through
a user interface, and to run multiple simulations by changing
the number of robots and the number of seconds per slot.

In addition to providing valuable insights into the practical
application of the blockchain technology for the considered
use case, our solution enables rapid testing and development
of innovative decentralized mobility-as-a-service platforms for
urban mobility systems. As future work, we plan to generalize
the orchestrator to enable the execution of different user-defined
scenarios. We also intend to include network simulation into the
framework to allow for more accurate performance evaluation
based on real-time network status.

V. ACKNOWLEDGEMENT

Supported by the IN2CCAM project, funded by European
Union’s Horizon Europe research and innovation program under
grant agreement No 101076791.

REFERENCES

[1] E. Ayyildiz and M. Erdogan, “Addressing the challenges of using
autonomous robots for last-mile delivery,” Computers & Industrial
Engineering, vol. 190, p. 110 096, 2024.

[2] G. Bendiab, A. Hameurlaine, G. Germanos, N. Kolokotronis, and S.
Shiaeles, “Autonomous vehicles security: Challenges and solutions using
blockchain and artificial intelligence,” IEEE Transactions on Intelligent
Transportation Systems, vol. 24, no. 4, pp. 3614–3637, 2023.

[3] T. Hardes, I. Turcanu, and C. Sommer, “Poster: A Case for Heterogenous
Co-Simulation of Cooperative and Autonomous Driving,” in 14th IEEE
Vehicular Networking Conference (VNC 2023), Istanbul, Türkiye: IEEE,
Apr. 2023.

[4] P. A. Lopez et al., “Microscopic Traffic Simulation using SUMO,” in
21st international conference on intelligent transportation systems (ITSC),
IEEE, 2018, pp. 2575–2582.

[5] T. Kučera and J. Chocholáč, “Design of the city logistics simulation
model using PTV VISSIM software,” Transportation Research Procedia,
vol. 53, pp. 258–265, 2021.

[6] A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer, and
J.-P. Hubaux, “TraCI: an interface for coupling road traffic and network
simulators,” in Proceedings of the 11th communications and networking
simulation symposium, 2008, pp. 155–163.

[7] P. Chunhapanya, local-tesnet, https://github.com/ethereum/local-testnet,
2023.

