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Abstract—This paper proposes a structured framework for
Network Digital Twins (NDTs) in 6G, addressing the lack of
formal definitions and standardised architectural guidelines in the
field. By refining the conceptual foundations of NDTs, it introduces
a functional architecture, clarifies key components such as AI-
driven workflows, a simulation framework, data management,
and orchestration, and provides concrete examples illustrating
their role in network automation, optimisation, and predictive
analytics. The goal is to offer a cohesive reference model that
guides the community in shaping NDTs development, ensuring
interoperability, scalability, adaptability, and seamless integration
into AI-native 6G networks for improved intelligence and efficiency.

I. INTRODUCTION

The evolution from 5G to 6G is anticipated to bring trans-
formative advancements to communication networks, enabling
demanding applications such as Immersive Communications
and Hyper-Reliable Low-Latency Communications (HRLLC).
Beyond meeting the technical requirements, 6G aims to
address broader societal objectives, including energy efficiency,
enhanced sustainability, and universal connectivity. Achiev-
ing these ambitions requires rethinking traditional network
paradigms and moving towards adaptive architectures capable
of integrating intelligence at every layer.

One concept gaining prominence in this context is the
Network Digital Twin (NDT). NDTs represent a virtual coun-
terpart to the physical network, enabling real-time monitoring,
operational analysis, and predictive capabilities. By providing
a detailed representation of network behaviour, configuration,
and state, NDTs facilitate operational complexity reduction, the
optimization of resources, and the enhancement of scalability
and reliability required for future networks. Moreover, NDTs
are expected to serve as a sandbox for the reliable and safe
training/testing of AI-based network functions and services.

While the concept of NDT has been explored in the literature,
existing works often fall into two extremes: either they present
highly specific implementations that lack generalisability, or
they remain too abstract to provide actionable insights. Fur-
thermore, a clear and consistent definition of what constitutes
an NDT, its scope, and its functional requirements are often
missing. This gap prevents a unified, practical approach to
NDTs in next-gen networks.
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This paper addresses this gap by proposing a structured
framework and a tangible approach to NDTs. Moreover, it intro-
duces an enhanced functional architecture for NDTs, expanding
upon the 6G-TWIN vision established during the project’s
first year. Building on the framework initially presented in
[1], this updated architecture establishes the foundation for
integrating digital twins into AI-based 6G systems through
a layered approach, combining physical and digital network
representations. The proposed architecture is designed to bridge
the divide between theoretical conceptualisation and real-
world implementation, offering a functional model that is both
adaptable and applicable to diverse 6G use cases.

We thus propose a new functional architecture for integrating
and using NDTs with AI and simulation components. This
includes a comprehensive NDT management entity to oversee
lifecycle and interactions between persistent and on-demand
layers, ensuring seamless transitions between data-driven and
simulation-driven workflows. Integration of AI workflows
is also critical, as current architectures lack well-defined
mechanisms to train, implement, and validate AI models,
which are essential for predictive reliability. In addition, a
structured mechanism is needed to enable dynamic transitions
between real-world data and simulated environments, allowing
simulations to refine the behaviour of the network proactively.
Finally, scalability and heterogeneity must be addressed through
a modular and extensible design to support the diverse data,
technologies, and scenarios inherent in 6G networks.

II. RELATED WORK

One of the main contributions in the NDT architecture
definition comes from the International Telecommunication
Union - Telecommunication Standardization Sector (ITU-T)
[2], which has outlined key guidelines for the core features
and functionalities of NDTs. The founding components of the
NDT are defined as: data, mapping, modelling, and interfaces.

The data component serves as the backbone, ensuring
harmonized and integrated information through a unified
repository. Real-time mapping sets NDTs apart from tra-
ditional simulations by enabling continuous data exchange
between physical and virtual networks. Modelling replicates the
essential attributes and functionalities of physical counterparts
while also translating application requirements into objective-
specific functions. Finally, standardized interfaces enhance
compatibility and scalability by linking physical networks to
virtual ones via southbound interfaces and virtual networks to
applications through northbound interfaces.

Other organizations, such as the 3rd Generation Partnership
Project (3GPP), are also exploring the role of NDTs in network
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Table I
FUNCTIONAL REQUIREMENTS OF THE 6G-TWIN ARCHITECTURE

FR ID: Description
FR.DC.01: The Data Collection Framework ensures the integration of data from various
sources and across various domains, extending its capabilities towards the Cloud-to-Far-
Edge continuum.
FR.DC.02: The Data Collection Framework provides harmonisation mechanisms for
different data formats and standards, ensuring a distributed model for securely sharing
and storing data across multiple locations, while also guaranteeing efficiency in data
processing, analysis, and scalability.
FR.DC.03: The Data Collection Framework enforces robust access policies that support
multiple communication protocols and ensure privacy and security among the connected
devices, including current and legacy protocols.
FR.ZSM.01: The ZSM allows a fully automated network management system, discovering
and integrating different data points while automatically monitoring the real-time status
of the NDT
FR.ZSM.02: The ZSM enables the management and orchestration of network resources,
using Al-based NFs/NSs to optimise their allocation, automating CI/CD mechanisms,
and supporting programmable interfaces for NDT control.
FR.ZSM.03: The ZSM ensures interoperability between new and existing services, protect-
ing APIs and network resources using necessary Authorisation/Authentication/Accounting
(AAA) protocols, allowing for the NDT to have secure and reliable communications.
FR.MANO.01: The F-MANO supports Al-based NFs/NSs to allow for cross-domain
and multi-time scale network Lifecycle Management (LCM), managing the deployment
and orchestration of workloads.
FR.MANO.02: The F-MANO provides a standardised way to offer MLOps support to
the created Al models, handling the relevant CI/CD practices.
FR.MANO.03: The F-MANO exposes a comprehensive and standardised API for secure
and reliable communications across the NDT ecosystem, including LCM mechanisms
and cross-domain Al-based NFs/NSs.
FR.SIM.01: The Simulation framework employs specifications that describe communica-
tion protocols and data structures between itself and the different simulators. Relevant
simulation services, such as semantic description of data structures, time management
services and exception handling are also handled by the Simulation Framework.
FR.SIM.02: The Simulation Framework integrates the necessary basic and functional
models on the simulators as they are available, custom-built according to model
parameters.
FR SIM.03: The Simulation Framework tailors the models with machine-readable
descriptions of computing, storage, and functionalities requirements, such as model
deployment and metric gathering, according to the simulation goals,
FR SIM.04: The Simulation Framework establishes a protocol for the closed-loop
framework of the NDT, allowing for the transfer of important simulation information
regarding configurations and results.
FR SIM.05: The Simulation Framework produces abstract specifications and configu-
rations for interoperability. It also establishes a synchronisation for time management,
event distribution and global state for different working simulators

automation. For instance, 3GPP’s technical report TR 28.915
[3], part of Release 19, examines how NDT models can
integrate with automation functions and highlights key use
cases for NDTs. Similarly, the European Telecommunications
Standards Institute (ETSI) [4] and the Internet Engineering
Task Force (IETF) [5] offer architectural perspectives on NDTs
that align with ITU-T’s recommendations.

Different perspectives on NDTs have emerged in the industry.
For example, Spirent’s white paper [6] defines NDTs as
software and hardware emulations of a physical 5G network,
enabling iterative prototyping, testing, assurance, and self-
optimization. Their architecture modularizes the network,
offering flexibility in testing and modelling. Similarly, ZTE’s
white paper [7] proposes an NDT architecture that incorporates
a service layer to organize functions into microservices,
enhancing scalability, adaptability, and maintenance.

Research focuses on the application of NDTs within the
Radio Access Network (RAN) domain [8], [9], [10], as this
represents one of the most intricate and resource-intensive
components of 6G infrastructure. In general, we can see
that existing works lack a unified, practical framework, often

Table II
NON-FUNCTIONAL REQUIREMENTS OF THE 6G-TWIN ARCHITECTURE

NFR ID: Description
NFR DC.01: The Data Collection Framework should optimise system resource usage
in order to ensure optimal performance of network operations, real-time data analysis,
while ensuring minimal delay.
NFR DC.02: The Data Collection Framework should be compatible with all devices
and technologies, ensuring interoperability and seamless connectivity, improving the
efficiency and flexibility of data collection.
NFR DC.03: The Data Collection Framework should guarantee strong security and
privacy measures to protect data from unauthorized access.
NFR.ZSM.01: The ZSM can integrate multiple NDTs for real-time data analytics and
automated decision-making across multiple domains and time scales, guaranteeing
standardised APIs and interfaces for interoperability between devices and domains, as
well as the ability to handle failures.
NFR.ZSM.02: The ZSM will integrate Network analysis, planning, management, and
control operations, by using Al-based functions and DevOps principles on running
workloads, minimizing latency and optimising energy efficiency.
NFR.ZSM.03: The ZSM shall comply with NDT requirements regarding a secure and
private environment across domains.
NFR.MANO.01: The F-MANO can integrate multiple NDTs for real-time data analytics
and decision-making across multiple domains, seamlessly integrating various network
elements, resorting to relevant industry standards and regulations.
NFR.MANO.02: The F-MANO will use Al-based NFs/NSs for data analytics and decision-
making purposes, maintaining network operations by adhering to GitOps, DevOps, and
MLOps principles to ensure efficient management and orchestration support to the NDT.
NFR.MANO.03: The F-MANO will support multiple NDT instances and network
elements across multiple network domains, efficiently scaling Al model training according
to demand and following a cloud-native approach to manage workload LCM.
NFR.SIM.01: The Simulator Framework establishes a platform-independent solution
through multiple programming languages, using Open-Source software interfaces
NFR.SIM.02: The Simulation Framework federation overhead allows for secure
communication between components and flexible simulations.
NFR.SIM.03: The Simulation Framework will parameterise simulations, to guarantee an
efficient verification and validation process, as well as an efficient output of metrics and
results.

being too abstract or too narrow. Key aspects like Artificial
Intelligence (AI) integration, automation, and scalability remain
insufficiently addressed, motivating our proposal for a more
concrete and adaptable NDT architecture.

III. 6G-TWIN’S FUNCTIONAL ARCHITECTURE

An NDT architecture must integrate intelligent mechanisms
for seamless orchestration, enabling real-time simulation,
analysis, and optimization of network operations. Our proposal
includes four key pillars: (i) a data collection framework for
dynamic data acquisition, (ii) Zero-touch Service and network
Management (ZSM) for AI-driven automation, (iii) Federated
MANO (F-MANO) for decentralized network control, and
(iv) the Simulation Framework for predictive modeling. To
ensure effective implementation, we propose both functional
requirements (as outlined in Table I) and non-functional
requirements (as detailed in Table II) for a NDT architecture.

More precisely, on the NDT architecture’s functional require-
ments the data collection framework shall enable seamless
data integration, access policies, and scalable processing. The
ZSM framework shall support AI-driven automation, real-
time monitoring, and resource optimization. F-MANO shall
ensure AI-based lifecycle management, standardized APIs,
and MLOps support. Finally, the Simulation Framework shall
enable tailored simulations and platform interoperability. Non-
functional requirements emphasize performance and scalability,
ensuring optimized resource usage, minimized latency, and
platform-independent operation, while maintaining privacy and
compliance across all components.
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Figure 1. 6G-TWIN’s functional architecture

Based on these requirements, Figure 1 represents a functional
architecture that has been built as a comprehensive framework
for integrating NDT with AI-driven functionalities and simula-
tion components, while providing a comprehensive management
layer. It is structured around several interconnected components,
each with a distinct role to play in ensuring efficient, scalable,
and adaptive operations. They broadly fall into two domains.

The physical network (bottom part of the figure) serves a
dual purpose through its interconnected components. First, it
supplies real-world data to the NDT, facilitating the creation
of more accurate models. Second, it receives decisions, recom-
mendations, and trained models for deployment, establishing
a continuous closed-loop system that enables automation,
predictive modelling, and enhanced performance.

The digital network (top part of the figure) consists of
multiple components designed to create and maintain a real-
time representation of the physical network. It facilitates the
structured storage, processing, and utilization of data, ensuring
accurate and up-to-date state of NDT modelling [11]. The
remainder of the section details the architecture’s building
blocks with concrete definitions for each layer.

A. Physical Network

The physical network, in green colour in the figure, serves
as the infrastructure backbone, encompassing the RAN, Core

Network (CN), Transport Network (TN), and edge and cloud
computing resources. Guided by network programmabil-
ity [12] and Zero-touch Service and network Management
(ZSM) [13], it enables AI-driven automation and dynamic
optimization. This layer includes the data collection framework,
management and orchestration layer, and mechanisms to
implement optimization outcomes. In this context, NDTs
work as analytical services, supporting data-driven decision-
making. They enable safe training and testing of algorithms
or directly generate decisions for controllers and orchestrators
to apply to the physical network. This enables efficient cross-
domain coordination with continuous feedback loops for self-
optimization and adaptive management.

To create a digital replica of the physical network, the
data collection framework integrates real-time network data
into the NDT framework. It efficiently ingests, harmonizes,
and processes telemetry data in compliance with industry
standards. Supporting diverse data formats, traffic patterns,
and security protocols, it leverages parallel processing and
distributed computing for scalability. The framework consists
of two sublayers: the telemetry data layer, positioned in the
physical domain, captures and processes real-time raw network
telemetry data from various interfaces, and the harmonization
data layer, located in the digital domain, aggregates, formats,



and delivers this standardizes information into smart data
models1 for simulation and decision-making. Pre-processing
ensures alignment with standard-defined data structures, such
as 3GPP TS 28.552 [14] and 3GPP TS 38.314 [15]. These
layers are interconnected through data communication buses,
ensuring seamless data flow between the physical and digital
domains, while dynamic routing, prioritization, and error
checking improve responsiveness and reliability.

The network MANagement and Orchestration (MANO)
automates network operations, overseeing interactions between
the physical network, NDT, and simulation components. It
manages the lifecycle of network functions, orchestrates
AI-based decision-making, and automates deployments. The
MANO framework incorporates domain analytics powered by
Zero-touch Service and network Management (ZSM) closed
loops, enabling intelligent decision-making through an NDT-
driven control mechanism. Finally, the actuation and execution
interfaces apply optimization decisions to the network.

B. NDT MANagement and Orchestration (MANO)

In purple, the NDT MANO layer governs the integration
and operation of all components within the NDT architecture,
ensuring synchronized interactions between the physical net-
work and the NDT elements, composed of data, models, a
simulation framework, and AI training mechanisms. It enables
dynamic adaptation to evolving network requirements while
maintaining system efficiency.

At its core, this layer ensures the lifecycle management of the
NDT instances. This includes the NDT instance decomposition
into basic and functional models, the creation, deployment,
and continuous refinement of such models, and potentially
coordinating the interaction among NDT instances. This layer
orchestrates the generation of NDT instances through the
different management blocks. The model management obtains
the appropriate NDT models from the model repository. In
contrast, the data management ensures the real-time network
data feeds such models, enabling a continuous refinement of
models, simulations, and AI-driven functionalities.

Through the AI workflow management and the simulation
management, this layer allows the NDT instances to be used
with a dual purpose: a) to serve as a sandbox where AI
algorithms can be trained and validated before deployment in
the physical network and b) to generate hypothetical ("what-if")
scenarios to try setups and evaluate how the physical network
would respond to those setups. Thus, this layer enables seamless
transitions between real-time network data and simulation-
based testing, ensuring that simulation results are validated
and reintegrated into the operational network. This feedback
loop is essential for adaptive decision-making and network
optimization. Moreover, a unified deployment interface stream-
lines the configuration, monitoring, and execution of advanced
network scenarios, facilitating efficient model orchestration and
real-time performance tracking across diverse applications.

1https://smartdatamodels.org/

C. Real-world representation

In blue, this layer allows the creation of the necessary
models to represent the physical network accurately. At its
core, the unified data repository (UDR) is a centralized
storage system aggregating historical and real-time data from
network infrastructure, sensors, and external contextual sources.
It enables efficient data harmonization and retrieval to support
decision-making within the NDT framework.

The unified data model (UDM) defines the structure of
network representations, consisting of basic and functional mod-
els. Basic models capture the real-time state of physical and
virtual network elements, including configurations, topology,
and environmental conditions, ensuring an accurate emulation
of network dynamics. They serve as a foundation for validation
and control mechanisms. In contrast, functional models build
upon these insights to optimize network operations, predict
behaviour, and improve decision-making, often incorporating
AI-driven techniques. The interaction between the model and
data management components ensures the lifecycle manage-
ment of NDT instances, aligning them with application-layer
needs. This layer enables a continuously evolving and self-
adaptive NDT environment by facilitating seamless integration
between data and model repositories, and simulation models.

D. NDT modelling and simulation framework

In orange, the digital twin simulation framework enables
decision-making by coupling simulation models and simulators
within the NDT architecture. Simulators such as OMNeT++,
ns-3, VIAVI TeraVM RAN Scenario Generator (RSG), and
MATLAB are software tools capable of running various simula-
tion models. Simulation models abstract key network elements,
including User Equipments (UEs), gNodeBs (gNBs), and core
networks (that is, models in the traditional sense), as well as
parameters like trajectories, transmission power, and protocols –
all forming a complete scenario to be simulated. Simulation
models are typically implemented through configuration files
specific to each simulator.

To ensure flexibility, the simulation framework allows
the integration of multiple simulators rather than restricting
decision-making to a single tool. It enables the interoperability
of simulation models across different platforms by facilitat-
ing real-time data exchange between simulators, similar to
Functional Mock-up Interface (FMI) [16] and the High Level
Architecture (HLA) [17]. This openness is reinforced by an
open-source implementation, allowing developers to adapt the
framework as needed.

Rather than supporting real-time simulation, which is often
infeasible due to computational constraints, the framework
focuses on scenario reproduction and what-if analysis, par-
ticularly for AI training. Since AI models require extensive
datasets that are often unavailable in real networks, synthetic
data must be generated through simulation.

The simulation framework interaction is managed by the
NDT management layer (cf. Section III-B), which retrieves
necessary models, configurations, and parameters from the
model repository and AI training module. It then instantiates



the simulators, manages their execution, collects results, and
feeds them back into AI training and model optimization via
the NDT management layer. The extracted insights are then
leveraged by the NDT management layer to adjust real network
parameters, ensuring continuous system improvement.

E. AI training

In yellow, the AI training in the NDT framework involves
developing functional models using supervised Deep Learning
(DL) and Reinforcement Learning (RL).

Supervised deep learning relies on structured datasets
generated either by the physical network or by the simula-
tion framework. Preprocessing steps, such as data cleaning,
feature selection, and dimensionality reduction, ensure model
robustness [18]. The training involves mapping inputs to outputs
using a predefined neural network structure, optimizing a loss
function, and iteratively refining model parameters [19].

Once required, the data management block in the NDT
MANO layer captures the required dataset, which is then
processed by the preprocessing module before entering the
training stage. This preprocessing step enhances convergence
speed and accuracy while mitigating deviations and overfitting.
Once trained, the model is returned to the NDT MANO layer,
where it is stored as a functional model in the model repository
and made available for deployment at runtime.

Reinforcement learning follows an exploration–
exploitation paradigm where an agent interacts with an
environment modelled as a Markov Decision Process. The
Simulation Framework provides this environment. Learning
involves observing states, selecting actions, receiving rewards,
and progressively refining a decision policy. The trained
policy and its metadata are stored in the model repository for
real-time decision-making within the NDT framework.

F. Unified dashboard

The architecture features a unified dashboard (grey) as
an interactive interface for stakeholders to configure models,
access functionalities, and monitor NDT operations in real-
time. This centralized tool enhances network visualization
and optimization. Additionally, it supports diverse use-case
scenarios, demonstrating adaptability across applications. In our
case, two key use cases illustrate its potential: a) teleoperated
driving, which leverages real-time simulation and predictive
analysis for low-latency, reliable remote vehicle operation,
and b) energy savings in dense deployments, where the NDT
optimizes resource management to reduce energy consumption.

In summary, this architecture seamlessly integrates real-time
monitoring, predictive modelling, and simulation, providing a
scalable and efficient solution for next-generation 6G networks.

IV. USE-CASES, EVALUATION, AND EXAMPLES

The proposed architecture is designed to be flexible, modular,
and scalable, accommodating diverse use cases with heteroge-
neous data sources, technologies, and operational scenarios. To
validate its adaptability, two use cases have been considered:
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Figure 2. An illustrative example of the teleoperated driving use case.

teleoperated driving and energy efficiency, each addressing
distinct societal challenges and performance objectives.

Teleoperated driving focuses on enhancing mobility acces-
sibility, improving road safety and traffic efficiency, reducing
urban congestion and pollution, and supporting emergency
response operations. Meanwhile, the energy efficiency use case
aims to minimise network energy consumption, reduce car-
bon footprint, and promote energy-aware telecommunications,
ensuring sustainable and optimised network operations.

A. Teleoperated Driving

Teleoperated or remote driving refers to the concept where
a vehicle is controlled or driven remotely by either a human
operator or a cloud-based automated operator. This innovative
approach bridges the gap between autonomous driving and
manual driving, leveraging advanced network and commu-
nication technologies [20]. However, the performance and
safety of teleoperated driving are highly dependent on network
conditions [21]. Factors such as latency, end-to-end available
bandwidth, packet loss, network availability, and reliability
play a critical role. These conditions can vary significantly
depending on the location, physical environment, and network
load, impacting the overall efficacy of teleoperation.

These requirements underline the critical role of robust
network performance in enabling safe and effective teleoperated
driving, leading to its integration into future mobility solutions.

Example: Figure 2 depicts a vehicle being remotely operated
via a 6G network that relies extensively on Virtual Network
Functions (VNFs). In this configuration, teleoperation requires
data fusion and pre-processing on edge servers to mitigate the
vehicles’ limited computational power while minimizing the
transmitted data volume, thereby reducing network congestion.
Additionally, edge servers can be deactivated during periods
of inactivity.

Before the journey commences, the NDT MANO instructs
the simulation framework – based on system and scenario
configurations from the unified dashboard and relying on basic
and functional models that replicate the physical world – to
operate the vehicle in a fully simulated environment accurately
representing real-world conditions. The simulation results are
then reported to the NDT MANO, which evaluates whether
the network can provide sufficient edge computing resources



along the planned route. If deficiencies are identified, additional
resources (e.g., edge computing capacity or VNFs) are allocated
within the simulation until the virtual journey completes
successfully. The resulting optimized configuration parameters
are subsequently transmitted to the relevant controllers via the
network MANO, which interfaces with real-world actuators.

B. Energy Efficiency
The deployment of cellular networks becomes denser and

denser in order to satisfy growing demands in ubiquitous
Enhanced Mobile Broadband (eMBB) communication. One of
the main 6G challenges is the control of energy consumption
and energy saving. Recent studies [22] have shown that
the telecommunication sector contributes approximately 51%
of carbon emissions with information and communication
technology. The objective of energy saving is twofold. First, it is
a strong business driver as it will reduce the operating expenses
(OPEX) for mobile operators. Second, it will contribute to the
sustainability of the networks, as both RAN and Core will
become greener due to a reduction in power consumption.

From a technological point of view, 6G networks require
dynamic configuration based on the load, channel conditions,
and end-user quality of service requirements. For example,
over-provisioning of resources when the load is low leads
to ineffective energy consumption. To solve this problem,
the activity of underutilized gNBs can be reduced, or they
can be even switched off. Similarly, smart algorithms for
dynamic power allocation, physical layer operations (such as
beamforming), radio, and computing resource management are
needed. Standardization entities, such as ETSI and O-RAN,
see energy saving as one of the promising use cases for NDTs,
as they create a detailed digital replica of a complex cellular
network and provide a powerful way for verification of energy-
saving actions [4], [23].

Example: In 6G-TWIN, we consider a multi-RAT hetero-
geneous network operating at two frequency bands, high-
frequency (mmWave or sub-THz) and regular 5G (e.g., C-band).
Higher frequencies offer significantly higher bandwidth at an
expense of worse propagation properties due to vulnerability to
blockages, higher path loss, and oxygen absorption. However,
due to lower wavelength, the size of the antenna becomes
smaller, which allows building antenna arrays consisting of a
large number of closely-spaced antenna elements. Such antenna
arrays are perfectly suitable for beamforming of the signal
towards the direction of the receiver. Besides, Reconfigurable
Intelligent Surfaces (RISs) can be used to overcome loss of
Line of Sight (LoS) due to blockages. In this scenario, high-
frequency gNBs take the role of micro base stations that serve
users in the localized areas when high bandwidth is needed,
e.g., when heavy load applications such as XR are used. On
the other hand, C-band gNBs perform as macro base stations
providing coverage for all users in the cell.

We will leverage NDT to perform the network management
in the following domains: (1) data generation for training of
AI-based beam prediction algorithms; (2) digital playground
for decision-making agents in RAN and Core.

V. CONCLUSION AND FUTURE WORK

This paper proposed an NDT framework integrating AI,
simulation, and adaptive management targeting future 6G sys-
tems. The proposed architecture enables seamless data-driven
and simulation-driven transitions while ensuring scalability.
Future work includes proposing and validating basic and
functional models for concrete applications, along with early
implementation to assess performance and feasibility.
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