
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 1

A Survey on Controller Area Network
Reverse Engineering

Alessio Buscemi, Member, IEEE, Ion Turcanu, Member, IEEE, German Castignani, Andriy
Panchenko, Member, IEEE, Thomas Engel, Member, IEEE and Kang G. Shin, Life Fellow, IEEE

Abstract—Controller Area Network (CAN) is a masterless
serial bus designed and widely used for the exchange of mission
and time-critical information within commercial vehicles. In-
vehicle communication is based on messages sent and received
by Electronic Control Units (ECUs) connected to this serial bus
network. Although unencrypted, CAN messages are not easy to
interpret. In fact, Original Equipment Manufacturers (OEMs)
attempt to achieve security through obscurity by encoding the data
in their proprietary format, which is kept secret from the general
public. As a result, the only way to obtain clear data is to reverse
engineer CAN messages. Driven by the need for in-vehicle message
interpretation, which is highly valuable in the automotive industry,
researchers and companies have been working to make this process
automated, fast, and standardized. In this paper, we provide a
comprehensive review of the state of the art and summarize the
major advances in CAN bus reverse engineering. We are the
first to provide a taxonomy of CAN tokenization and translation
techniques. Based on the reviewed literature, we highlight an
important issue: the lack of a public and standardized dataset for
the quantitative evaluation of translation algorithms. In response,
we define a complete set of requirements for standardizing the
data collection process. We also investigate the risks associated
with the automation of CAN reverse engineering, in particular
with respect to the security network and the safety and privacy
of drivers and passengers. Finally, we discuss future research
directions in CAN reverse engineering.

Index Terms—CAN Bus, Reverse Engineering, Security, Con-
nected Vehicles

LIST OF ACRONYMS

5G Fifth Generation of Mobile Networks
6G Sixth Generation of Mobile Networks
ABS Anti-lock Braking System
ACTT Automatic CAN Tokenization and Translation
ACK Acknowledge
AD Anomaly Detection
AECC Automotive Edge Computing Consortium
AES Advanced Encryption Standard
AHC Agglomerative Hierarchical Clustering
AR Augmented Reality

Copyright (c) 2022 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

Manuscript received XXX, XX, 2022; revised XXX, XX, 2022.
A. Buscemi and T. Engel are with the Faculty of Science, Technology and

Medicine (FSTM), University of Luxembourg (e-mail: alessio.buscemi@uni.lu;
thomas.engel@uni.lu).

I. Turcanu and G. Castignani are with the Luxembourg Institute of Science
and Technology (e-mail: ion.turcanu@list.lu; german.castignani@list.lu).

A. Panchenko is with the Brandenburg University of Technology (e-mail:
andriy.panchenko@b-tu.de).

K. G. Shin is with the University of Michigan (e-mail: kgshin@umich.edu).

AST Abstract Syntax Tree
BCM Body Control Module
BE Big Endian
BFC Bit Flip Count
BFR Bit Flip Rate
CAN Controller Area Network
CANH CAN High
CANL CAN Low
CAV Connected and Autonomous Vehicle
CCAM Cooperative, Connected, and Automated Mobility
CE Correctly Extracted
CNN Convolutional Neural Network
CRC Cyclic Redundancy Check
CREFM Complete Reverse Engineering through Frame

Matching
CSI Critical Signals Identifier
DBC Database CAN
DBSCAN Density-based spatial clustering of applications

with noise
DES Data Encryption Standard
DID Diagnostic ID
DL Deep Learning
DLC Data Length Code
DoS Denial of Service
DSRC Dedicated Short-Range Communication
EBCM Electronic Brake Control Module
ECM Engine Control Module
ECU Electronic Control Unit
EEG Electroencephalogram
ELM Extreme Learning Machine
EOF End of Frame
EV Electric Vehicle
FD Flexible Data-Rate
FM Fowlkes-Mallows
FN False Negative
FPR False Positive Rate
FSM Finite State Machine
GMM Gaussian Mixture Model
GPS Global Positioning System
HMM Hidden Markov Model
IDE Identifier extension bit
IDS Intrusion Detection System
IFS Inter-frame spacing

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 2

IMU Inertial Measurement Unit
IoT Internet-of-Things
ISO International Organization for Standardization
ISP Internet Service Provider
IVI In-Vehicle Infotainment
KWP Keyword Protocol
LE Little Endian
LEAP Lightweight Encryption and Authentication

Protocol
LIN Local Interconnect Network
lsb least significant bit
LSTM Long Short-Term Memory
LTE Long Term Evolution
MAC Message Authentication Code
MANET Mobile Ad Hoc Network
MISAR Micro-Processed Sensing and Auto Regulation
ML Machine Learning
MLP Multilayer Perceptron
MOST Media Oriented Systems Transport
msb most significant bit
NIST National Institute of Standards and Technology
NN Nearest Neighbor
NRMSE Normalized Root Mean Squared Error
OBD-II On-Board Diagnostics
OBU On-Board Unit
OEM Original Equipment Manufacturer
OSI Open Systems Interconnection
PAM Parking Assist Module
PID Parameters ID
RC4 Rivest Cipher 4
READ Reverse Engineering of Automotive Data frames
RF Random Forest
RMSE Root Mean Squared Error
RPM Revolutions Per Minute
RTR Remote Transmission Request
RSU Roadside Unit
SAE Society of Automotive Engineers
S2-CAN Sufficiently Secure CAN
SecOC Secure Onboard Communication
SHA Secure Hash Algorithm
SoC Status of Charge
SVM Support Vector Machine
TANG Transition Aggregated N-Grams
TDBC Total number of signals in the DBC file
TE Total Extracted
TPR True Positive Rate
UDS Unified Diagnostic Services
UI User Interface
UML Unified Modeling Language
VANET Vehicular Ad Hoc Network
V2X Vehicle-to-Everything

I. INTRODUCTION

In recent decades, automotive innovation has been driven
primarily by the electrification and digitalization of the ve-
hicle’s internal components. While the cost of the electronic
components represented only about 1 % of the total production
cost of commercial vehicles in the 1950s, it grew to 35 %
in 2018, and is expected to increase to 50 % by 2030 [1].
In addition, the global automotive data market, of which in-
vehicle data is a large part, is estimated to be worth between
450–750 $ billion by 2030 [2].

Microcontrollers were first introduced to the automotive
industry in 1978, with the introduction of the Cadillac Seville,
a vehicle with an in-dash trip computer powered by a single
Motorola 6801 chip [3]. This was the beginning of the era of
intelligent vehicle systems.

Initially, the electronic processors/sensors integrated into a
vehicle, known as ECUs, managed the various functions of
the vehicle independently. In the 1980s, as the complexity
of automobiles increased due to the introduction of new
technologies (e.g., fuel injection, turbocharging, airbags, etc.),
OEMs found it necessary to allow ECUs to interact with each
other over a physical electronic network.

Introduced in 1991 by Bosch GmbH [4], CAN [5]–[7] is a
peer-to-peer serial bus that allows ECUs to send and receive
data without the need for an orchestrator node. In CAN, data
is exchanged via CAN messages, or frames, which typically
carry one or more signals. Signals encapsulate telemetry and
vehicle function values that describe the real-time state of a
vehicle. It quickly became popular in the automotive industry
due to its low production cost and high robustness to electrical
noise. In addition to its widespread use in vehicles, CAN is
now being integrated into a variety of other domains, including
elevators and escalators, medical equipment, industrial control,
ships, railroad, aviation, and navigation equipment [8].

Due to the stringent requirements of in-vehicle communica-
tions, only a limited number of networks are currently deployed
in commercial vehicles, such as CAN, Local Interconnect
Network (LIN), FlexRay, Media Oriented Systems Transport
(MOST), and Automotive Ethernet [9]. Of these, CAN is still
considered to be the de facto world standard for internal
communication in commercial vehicles and trucks. When
multiple networks are present in a vehicle, they are typically
designed as sub-networks connected to a central CAN bus in
the powertrain.

Until the beginning of this century, vehicles were considered
to be closed systems. More recently, the automotive industry
has begun to explore the possibility of using wireless com-
munication technologies to provide road safety, navigation,
and other services [10], [11]. In this context, vehicles can use
wireless technologies to interact with other vehicles (V2V)
and with the infrastructure (V2I). The most prominent short-
range wireless technologies for this scenario are Dedicated
Short-Range Communication (DSRC) [12] and cellular sidelink
communication (LTE-V2X, NR-V2X) [13]. For the medium to
long range, cellular technologies, such as 5G (and, in the future,
6G) will be used [14]. In the next decade, it is estimated that
95 % of vehicles on the road will be connected, and vehicle

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 3

connectivity is expected to have a huge social and economic
impact on mobility [15].

To support the variety of services enabled by connected
vehicles, from fleet management to cloud services [16], [17],
aftermarket and telematics companies are making extensive
use of in-vehicle data to monitor and predict the status of the
vehicle and its components. Given the large number of vehicles
on the road equipped with a CAN bus, the potential market
enabled by CAN reverse engineering is in the tens of billions
of US dollars [18].

However, interpreting the data by simply logging the traffic
is not straightforward. The CAN protocol does not include any
security features, such as encryption of the data payload or ECU
authentication. However, the signals are encoded according
to proprietary formats defined by each OEM, which are not
available to the general public.

There are a few solutions that address the need for inter-
pretable CAN data. In particular, a set of standards, SAE J1939
[19], aim to provide a standardized data stream between ECUs.
SAE J1939 has gained popularity in heavy-duty diesel vehicles,
to the point where most of them are now equipped with it.
Despite this, OEMs are still reluctant to provide access to
commercial vehicle data. So, the only way to interpret CAN
signals in vehicles today is through reverse engineering.

A. Introducing CAN reverse engineering

CAN bus reverse engineering is the process of identifying
signal boundaries within frames and decoding their semantic
meaning and format. In recent years, the optimization and
automation of this process has received considerable attention
from the research community and automotive companies. Fast,
standardized, and reliable reverse engineering is essential for
basic research and service development based on CAN data.

There have been numerous approaches to automating CAN
bus reverse engineering. They use different combinations
of hardware equipment, but also algorithms from different
domains, ranging from combinatorial optimization [20]–[22]
to Machine Learning (ML) [20], [23]–[26].

At the time of writing, a comprehensive comparative analysis
of CAN reverse engineering techniques has not yet been
published. As a result, the field of CAN reverse engineering
is diverse and difficult to follow for non-experts. Thus, there
is a growing need for a thorough survey of the CAN reverse
engineering approaches proposed so far and their pros and
cons.

B. Motivation and Related work

Between 80 and 100 million commercial vehicles are being
produced each year [27]. All of them incorporate one or more
CAN buses. Moreover, the CAN bus is predicted to remain
as a system component in commercial vehicles despite the
emergence of new in-vehicle networking technologies, such as
Automotive Ethernet [28]. Thus, CAN reverse engineering
will remain as an enabler of new vehicular services and
business models, and will have a primary impact on intelligent
transportation systems. For instance, a transportation company
can use it to gain insights on the data transiting on a specific

bus or truck model, which can then be collected in real time
and analysed remotely to facilitate fleet management. Having
access to the data shared in the CAN bus is also useful for
diagnostics and the prevention of faults, and can be a valuable
asset in forensics investigations.

The main motivation of this survey is to help readers from
the research community and the automotive industry to develop
a methodological understanding of the process, challenges, and
opportunities of automated CAN bus reverse engineering.

In the following, we will describe and comment on the
previously published surveys on CAN reverse engineering and
related topics, with the intention of providing a summary of
what is already available in the literature, identifying gaps, and
supporting the motivations and objectives of our work.

Studnia et al. [29] present a structured survey that provides an
overview of in-vehicle networks security. The authors provide
a thorough discussion of the various (possible) goals of an
attacker. Their survey describes both physical and remote
attacks. Remote attacks are specifically categorized based
on the use of intermediary third-party devices (indirect if
they use them, direct if they do not) and the distance from
the vehicle (short range/long range). Finally, the authors
summarize cryptographic protection techniques as well as
Intrusion Detection System (IDS) and ECU software integrity.
This scope allows for a discussion of the in-vehicle constraints
that these solutions must meet.

Avatefipour and Malik [30] discuss the five criteria that
should be met in secure CAN communication: i) data integrity,
ii) authentication, iii) confidentiality, iv) non-repudiation, and
v) availability. The authors also provide a summary of the main
related work on attacks on CAN. Bozdal et al. [31] discuss
related work on attacks affecting the integrity, confidentiality
and availability of CAN.

Groza and Murvay [32] provide an overview of the historical
evolution of in-vehicle networks and their security to later
focus on preventing attacks on CAN. In particular, the authors
provide a classification of prevention techniques based on two
complementary dimensions: cryptography-based vs. physical
characteristics-based, and physical layer security vs. application
layer security.

Several studies focus on presenting the characteristics of
a diverse set of attacks, with emphasis on the classification
of IDS proposed for CAN [33]–[35]. Lokman et al. [33] first
categorize related work on IDS based on the overall detection
strategy (i.e., anomaly, specification, signature, or hybrid-based).
The authors then subdivide each detection strategy according to
the approach followed (e.g., time, frequency, statistical, or ML-
based for anomaly-based detection) as well as the placement
strategy, i.e., CAN vs. ECU.

Dupont et al. [34], on the other hand, evaluate the differences
between related works based on i) the number of frames
composing each sample fed to the detection model, i.e., one
frame, two consecutive frames, or a window of frames; ii) the
data extracted from the frame, namely transmission frequency,
ID, and/or payload; iii) the type of the model, specified if built
manually based on vendor specifications, or learned if based
on supervised ML.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 4

Young et al. [35] divide works related to IDS on CAN
into seven categories describing the detection features used:
i) message frequency, ii) message intervals, iii) signatures, iv)
cyber-physical characteristics, v) entropy of the traffic, vi) CAN
frames fields, and vii) ECU data. Their survey then focuses
on the types of attacks detected by each related work, along
with the testbed used for evaluation.

Gmiden et al. [36] evaluate in depth six prominent crypto-
graphic algorithms for attack prevention based on: authenti-
cation, integrity, confidentiality, backward compatibility, resis-
tance to replay attacks, real-time requirements. Furthermore,
the authors compare some IDS systems based on data source,
detection method, location, frequency, and behavior. All of the
above methods are tested on a real hardware testbed.

A doctoral thesis by Jafarnejad [37] presents an exhaustive
list of works on driver fingerprinting. While the author considers
any type of data and environment (including driving simulators),
a large part of the presented work includes CAN data. Methods
for driver fingerprinting are compared based on the types
of signals considered, the features extracted, and the ML
algorithms used. Furthermore, related work is evaluated based
on the number of drivers considered and the identification rate
(accuracy). The author identifies several shortcomings in the
literature, including unrealistic or impractical data collection,
computational complexity, scalability, and classification under
closed-world assumptions.

A recent survey by Jo and Choi [38] categorizes the main
attacks on CAN based on the attack surface: i) physical attacks
requiring physical access, ii) wireless attacks requiring physical
access, iii) wireless attacks. Each of these classes is further sub-
divided according to the specific access point. The authors then
provide a detailed analysis of the proposed countermeasures,
which are organized according to the following taxonomy:

• Preventive Protection Methods – fuzzing and anti-analysis
methods. Fuzzing methods systematically send malformed
input values to the target system. Anti-analysis methods
aim to hide CAN traffic through encryption or other
obfuscation techniques.

• IDS – the work is divided into CAN packet-based and
ECU hardware characteristics-based approaches. Each of
these categories has further subgroups.

• Message Authentication – the work is divided into
Authentication Key Sharing Methods and Transmission
of Authentication Tag.

• Post Protection Methods – the work is divided into Attack
Identification, i.e., a combination of data logging and
attestation, and Secure Patch, i.e., the release of timely
firmware updates.

In order to promote a comparative analysis of the published
research, the survey evaluates the advantages and drawbacks
of each paper. With more than 60 reviewed studies, this survey
provides the most complete knowledge on countermeasures
against attacks on CAN at the time of this writing.

Verma et al. [21] are the first to provide a classification
of CAN reverse engineering methodologies. The authors
describe 9 related studies and categorize them based on
the signal properties that they can decode, i.e., boundaries,
endianness, signedness and semantics. We argue that while this

categorization provides a useful overview of the capabilities
of reverse engineering tools, it is insufficient to describe the
diversity of the existing approaches.

C. Contributions of this survey

Table I compares our survey with the related work presented
in Section I-B. As highlighted in the table, most of the
related work focuses on defining and comparing security
vulnerabilities, as well as categorizing and discussing potential
countermeasures, with a particular emphasis on cryptography
and IDS. According to Table I, automated reverse engineering
has been investigated less than other topics within the in-vehicle
networking research area. Nevertheless, the popularity of CAN
reverse engineering in academia and the industry is increasing,
as evidence by the publication of multiple studies in recent
years. Note that in this survey, all the tables providing a list
of papers, including Table I, are sorted in the chronological
order of their publication.

We are the first to present a comprehensive overview of CAN
reverse engineering approaches and a thorough discussion of
future developments in this area. We also address the impact
of automated CAN reverse engineering on security, driver
privacy, and the success rate of high-risk attacks, providing
an unprecedented overall perspective on opportunities and
challenges of CAN, and vice versa.

The main contributions of this paper are:
• A review of other surveys on CAN reverse engineering and

related topics, with the aim of highlighting their strengths
and limitations;

• A review of the general taxonomy of reverse engineer-
ing methodologies and contextualization of CAN data
decoding;

• A structured comparative study of state-of-the-art CAN
bus reverse engineering methodologies, highlighting the
advantages and disadvantages of each;

• A detailed analysis of the risks posed by CAN reverse en-
gineering to automotive safety, drivers/passengers privacy,
and OEMs intellectual property;

• A guideline for selecting the criteria for a standard dataset
that can be used for comparative studies of CAN reverse
engineering;

• An extensive discussion of potential future research
directions;

• An in-depth discussion of the opportunities presented
by CAN reverse engineering with respect to new use
cases enabled by Cooperative, Connected, and Automated
Mobility (CCAM) technologies.

D. Outline

The rest of the paper is organized as shown in Figure 1.
Section II provides a theoretical background on reverse
engineering. Section III introduces the CAN bus and the CAN
signals, which are the target of reverse engineering. Section IV
reviews the existing literature on CAN reverse engineering,
independently analyzing the methods for tokenization and
translation. The implications that the automation of reverse
engineering has on the security of CAN bus are examined in

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 5

Table I
COMPARISON OF OUR SURVEY WITH RELATED WORK.

Work Reverse Engineering Security Threats Privacy Threats Prevention Intrusion Detection

Studnia et al. [29] Related work on at-
tacks on CAN based
on the attack surface.

Related work on pre-
vention is briefly dis-
cussed.

Related work on IDS
is briefly discussed.

Avatefipour and Malik
[30]

The security proper-
ties that should be met
in CAN are listed and
the attacks classified
accordingly.

Bozdal et al. [31] The security proper-
ties that should be met
in CAN are listed.

Related work on IDS
is briefly discussed.

Groza and Murvay
[32]

Related work on IDS
is categorized accord-
ing to two dimensions.

Lokman et al. [33] Related work on IDS
is categorized based
on the overall detec-
tion strategy.

Gmiden et al. [36] Related work on en-
cryption for preven-
tion against CAN at-
tacks is evaluated ac-
cording based on six
security properties.

Young et al. [35] Related work on IDS
is categorized accord-
ing to the detection
features.

Dupont et al. [34] Related work on IDS
is categorized based
on the type of the
model the and the in-
put fed to it.

Jafarnejad [37] Related work on
driver fingerprinting
based on CAN data is
compared.

Jo and Choi [38] Related work on at-
tacks is categorized
according to the at-
tack surface and entry
points.

An extended taxon-
omy of prevention
methods is provided.

IDS are divided into
CAN traffic-based
and ECU based. Each
class has a number of
subcategories. Related
work is compared.

Verma et al. [21] Related work on CAN
reverse engineering is
compared based on
the decoded signals
properties.

Our work A taxonomy for re-
lated work on reverse
engineering is pro-
vided. Related work is
classified.

Related work on at-
tacks is categorized
and discussed, with a
focus on the role re-
verse engineering.

Related work on
driver fingerprinting
is discussed, with
a focus on the role
reverse engineering.

Related work on pre-
vention against CAN
attacks is categorized
and discussed, with a
focus on the impact on
reverse engineering.

Related work on IDS
is categorized and
briefly discussed.

Section V. Section VI suggests possible directions for future
research. In Section VII, we explore the opportunities offered
by CAN reverse engineering with respect to new automotive
services, while final thoughts and conclusions are provided in
Section VIII.

II. REVERSE ENGINEERING

Reverse engineering is a deductive process based on identi-
fying the components of a target device, system, software, or
process, and understanding how they interact with each other.

Its ultimate goal is to create an abstract representation of the
target based on the newly acquired knowledge [39].

A. Fields of Application
The history of reverse engineering is tied with the evolution

of war technology. In 260 BC, the Romans used a shipwrecked
Carthaginian Quinquereme as a blueprint for the production of
their new fleet of 120 warships, which largely contributed to
their victory in the First Punic War [40]. During WWII, after
making an emergency landing in the USSR, four Boeing B-29
Superfortress bombers were dismantled and reverse engineered

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 6

I. INTRODUCTION

II. REVERSE ENGINEERING

III. CONTROLLER AREA

NETWORK

IV. AUTOMATED CAN

REVERSE ENGINEERING

V. THREATS OF CAN

REVERSE ENGINEERING

VI. FUTURE WORK

VII. CONCLUSION

A. Introducing In-Vehicle Networks

B. Introducing CAN Reverse Engineering

C. Motivation and Related Work

D. Contributions of this survey

E. Outline

A. Protocol

B. Data

C. Taxonomy of CAN Signals

D. CAN Data Collection

E. Database CAN (DBC)

F. Key Takeaways

A. Attack Surfaces

B. Adversary Model

C. Types of CAN Attacks

D. Related Work on CAN Attacks

E. Security Issues

F. Privacy Issues

G. Other Threats

H. Countermeasures

I. Key Takeaways

A. Fields of Application

B. CAN Reverse Engineering

C. Key Takeaways

A. Tokenization

B. Translation

C. Benchmarking

D. Key Takeaways

A. Improving CAN Reverse Engineering

B. Performance Evaluation of CAN

Reverse Engineering

C. Reverse Engineering Multiplexed

CAN Frames

D. CAN FD Reverse Engineering

E. Key Takeaways

Sections Subsections

Figure 1. Structure of the paper.

in a large-scale operation. They were effectively used for the
design and production of the Tupolev Tu-4 bomber [41].

Reverse engineering is used in a variety of fields, such
as computer, electronic and mechanical engineering, design,
and systems biology, as well as for a multitude of research
and commercial purposes, such as forensic investigations and
competitor analysis [42], [43]. Given the multitude of targets
and their intrinsically different nature, the reverse engineering
techniques reported in literature vary greatly. Nonetheless, it
is possible to identify three general steps that are typically
followed in the process:

1) Information extraction – The target is analyzed and its
constituent components are identified;

2) Modeling – The newly acquired information is concep-
tualized, i.e., an abstract model representing the whole
structure is designed;

3) Validation – The abstract model is tested in a multitude
of scenarios to validate the findings.

Software engineering is the field reverse engineering has
gained the most popularity. Often the information regarding the
software design is lost over time and/or the software becomes
obsolete, and thus incompatible with newer systems. In such
cases, reverse engineering helps speed up the understanding
of the source code and/or its re-purposing. This is also known
as design recovery [44].

Reverse engineering can be employed not only in an end-
product, but at any stage of software development. Its output is
useful to take informed decisions during the software develop-
ment by, for instance, offering a graphical representation of the
code structure. This process is known as re-documentation [45].
A number of Unified Modeling Language (UML) tools for the
analysis of source code can be seen as reverse engineering
processes for re-documentation [46], [47]. Re-documentation
provides more structured and higher-level understanding of
software than the direct analysis of the source code. For this

reason, it is employed for identifying flaws in the system design,
as well as bugs and vulnerabilities.

Reverse engineering has also been widely adopted in illicit
activities [48]. Similarly to software developers, black-hat
hackers typically exploit reverse engineering techniques to
detect vulnerabilities in operating systems or software in order
to steal information or inject malware [49]. Another notable
example is the removal of the copyright protection of the source
code or media, also known as cracking. Reverse engineering
can also be employed to discover unauthorized copies of the
source code.

When the source code is not available, reverse engineering is
performed on the machine code or bytecode and can be referred
to as reverse code engineering [49]. This can be grouped into
decompilation, disassembly, and protocol reverse engineering.

Decompilation makes use of decompilers that generate source
code in a high-level language from the machine code of
executable programs. This methodology typically produces
imperfect results, leaving part of the code obfuscated. The
success rate of decompilers depends largely on the availability
of debugging data and metadata, e.g., produced by virtual
machines. Examples of widely-used decompilers are JAD for
Java [50] and Reflector for .NET [51]. The usage of piracy
prevention techniques, such as obfuscation, hinders the dynamic
analysis that can produce unexpected results.

Disassembly is based on disassemblers, which are capable
of translating binary code into assembly language to provide
insights for humans. A notable disassembler is IDA Pro [52].

Given a networking protocol whose formal specifications
are unknown, the goal of protocol reverse engineering is to
infer its parameters, formats, syntax and semantics [53]. It can
be achieved by following two distinct approaches: (i) study the
dynamic behavior of an application sending messages according
to the protocol, and (ii) sniff and analyze the traffic exchanged
between two or multiple hosts.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 7

PIDs Injection
[13,14,15,41,61,

 66,67]

ML Frame matching
[16]

Companion apps Semantic taxonomy

Supervised Unsupervised

Hierarchical
Clustering

[17,62]

Density-based
Clustering

[16,17]

Deep
Learning
[15,61]

Other
algorithms

[12,60]

Using OBD-II
dongle apps

[66,67]

Using IVI
apps
[66]

Unaware
human
effort

Aware
human
effort

[40,41,57]

CAN Reverse
Engineering

TranslationTokenization

Combinatorial
optimization
[13,14,43,57]

Bit Flip Rate
[16,41,44,58,59]

Figure 2. Taxonomy of reverse engineering. The reverse engineering of CAN
bus is a network trace-based protocol task.

In the first approach, taint checking is employed to locate the
code that parses the messages and correlate it with the messages.
The output is called execution trace and is used to identify the
fields and content type of messages. The main limitation of
this approach is its high dependency on the type of system
and programming language, making it difficult to generalize.
Moreover, similarly to decompilation, this approach is often
limited by the underlying privacy prevention techniques.

The second approach is based on logging the traffic transiting
a network into a network trace, and identifying patterns and
correlations between packets and messages in it. The decoding
process is mostly composed of two steps: syntax inference and
semantic inference. Inferring the syntax means discovering
the field boundaries, also known as tokenization, as well
as the endianness (see Section III-B) and format rules used
to represent the information in the protocol. The semantic
inference is the process of understanding the semantic meaning
of the data. Reverse engineering based on network traces can
be performed with the help of packet analyzer tools, such
as Wireshark [54], which allow manual inspection of the
data. Researchers focused on automating this process with the
aim of improving the performance and dealing with complex
protocols. The most successful approaches reported in literature
are based on Finite State Machine (FSM) automata and ML
algorithms. The former are used to map sequences of messages
and their relations [55], while the latter are employed to find the
underlying patterns and similarities between different messages
or chunks of data [56], [57].

B. CAN Reverse Engineering

CAN reverse engineering is the process of identifying the
semantic meaning and format of signals contained in data
payload by sniffing and analyzing traffic traces generated by
ECUs connected to the CAN bus. It is based on network-
protocol traces, and hence shares most of the characteristics of
this process, including tokenization, and often implies the usage
of ML techniques. However, due to its specific characteristics,
the methodology for CAN reverse engineering can also diverge
from other practices in literature for network-protocol based
reverse engineering (see Section IV). In Figure 2, we describe
our taxonomy of reverse engineering tasks in an effort to locate
CAN reverse engineering within a broader context.

Traditionally, CAN bus reverse engineering has been per-
formed manually by trained human operators, who trigger
events in the vehicle, e.g. by activating and deactivating sensors
and/or the injection of Parameters IDs (PIDs) through the
On-Board Diagnostics (OBD-II) port (see Section III-D), and
analyze the changes in the CAN traffic [58], [59]. The impact

Figure 3. Example of manual reverse engineering via Wireshark. The CAN
frames are grouped according to their ID and visualized in sequence on
the same row. Changes in the payload bytes are highlighted in real time to
support the identification of the signals boundaries by the human operator. A
common strategy for the identification of signals related to the target vehicle
functions is to activate the corresponding sensor and observe which bytes
become highlighted.

that such operations have on the data transiting on the CAN
bus is monitored in real time with the help of specialized tools,
such as Wireshark, CANtrace, and CANalyzer, etc. These
tools filter the CAN data according to selected frame IDs (see
Section III-A), thus providing a better understanding of the
dynamics of semantically consecutive information. Figure 3
shows an example of a CAN trace being processed in real time
for manual reverse engineering.

Manual CAN bus reverse engineering has proven to be a
reliable tool for understanding the CAN data, but it can take
hours to days. In recent years, the automation of this process has
drawn the attention of the scientific community and industrial
players, who aim for standardized, fast and scalable solutions.

Semi-automated reverse engineering does not require the
operator to be educated on CAN, but they must follow
specific procedures so as to generate the events in the vehicle.
Full automation, on the other hand, does not require any
expertise/knowledge of reverse engineering or CAN, i.e., the
individual inside the vehicle can be totally unaware of reverse
engineering that is taking place. This is ideal for companies
which have remote access to their clients’ vehicles – i.e.,
through the installation of proprietary sensors – and can collect
CAN data at any time and then process it offline.

The necessity for ground-truth information about driver
characteristics, vehicle operations, road and traffic conditions
is another relevant difference. In manual and semi-automated
procedures, ground-truth data can be collected by manually
inputting information or injecting diagnostic signals. Full
automation minimizes this dependency and enables reverse
engineering regardless of data-collection conditions/contexts.

Related work on semi-automated and automated reverse
engineering has shown that the data-collection and decoding
time can be reduced by, respectively, one and two orders-of-
magnitude over the manual approach [21], [24], [60], [61].
Note, however, that, in the case of manual reverse engineering,
the times for the two operations overlap, and hence should not
be added up.

Finally, another element of distinction is scalability. In the
manual approach, the same or equivalent manual actions must
be performed for every target car, making it unscalable with
the number of vehicle models. Semi- and fully-automated

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 8

CAN
Transceiver

CAN
Controller

Microcontroller

ECU #1

CAN
Transceiver

CAN
Controller

Microcontroller

ECU #2

CAN
Transceiver

CAN
Controller

Microcontroller

ECU #3

CANL

CANH
RL RL

Data Link
ISO 11898-1

Physical
ISO 11898-2,3

Figure 4. An example of CAN bus with three ECUs attached.

techniques, instead, become more accurate as more vehicles
are processed [20], [23], [24]).

Table II summarizes the characteristics of manual-, semi-
and fully-automated CAN bus reverse engineering. The table
shows that the main differences among the three approaches
is the level of human expertise and effort required.

C. Key Takeaways

In this section, we presented reverse engineering, a process
employed to extract hidden design information from systems
and data. The goal of CAN reverse engineering is to determine
the boundaries of the signals contained in the frames (known as
tokenization) and discover their semantic meaning (translation).
Then, we proceeded by discussing the transition from manual
to fully automated CAN reverse engineering.

The most important takeaways from this section are:
1) CAN reverse engineering is network trace-based, i.e. the

CAN traffic is logged and analyzed to find correlations
among the data.

2) CAN reverse engineering can be manual, semi-automated
or fully automated.

III. CONTROLLER AREA NETWORK

This section describes the CAN protocol and provides an
overview of relevant aspects of the CAN data: description,
taxonomy, collection process, and storage.

A. Protocol

The CAN protocol covers the first two layers of the Open
Systems Interconnection (OSI) model [62], i.e., physical and
data-link (see Figure 4). At the physical layer, it consists of
a pair of twisted wires, CAN High (CANH) and CAN Low
(CANL), with a nominal characteristic impedance of 120Ω.
The data are transmitted as differential wired-AND signals.

There are two implementations of the physical layer of CAN
2.0: the High Speed (ISO 11898-2 [6]) and Low Speed (ISO
11898-3 [7]). The High Speed CAN baud rate ranges from
40 kbit/s to 1 Mbit/s (depending on the length of the wire/bus).
The Low Speed CAN is characterized by baud rates ranging
from 40 kbit/s to 125 kbit/s.

At bit-level, 0 represents the dominant state, while 1 encodes
the recessive state. In the High Speed CAN, to transmit a

dominant state, the wires reach a differential voltage of 2 V,
with the CANH and CANL being driven, respectively, towards
3.5 V and 1.5 V. To transmit the recessive state, the wires must
have a differential voltage of less than 0.5 V.

Similarly to High Speed CAN, in Low Speed CAN the
wires must reach a differential voltage of 2 V around 2.5 V
to signal a dominant state. On the contrary, the recessive
state is transmitted when the CANH and CANL are pushed,
respectively, towards 5 V and 0 V. This standard is also known
as Fault-Tolerant, since it can tolerate wiring failures.

At the Data-Link layer (ISO11898-1 [5]), the communication
on the CAN bus relies on messages/frames. Each ECU sends
CAN frames periodically. The frames do not carry the address
of the sender/receiver ECU. Due to the absence of a master node
in charge of orchestrating the communication, if the bus is free,
a frame is received by all the other ECUs. In contrast, when
multiple ECUs transmit messages simultaneously, a collision
occurs. The resolution of collision on CAN bus is handled
through an arbitration process. The frame with the highest
priority (the lowest ID) precedes lower-priority (larger ID) ones.
This is achieved through the use of dominant bits overwriting
the recessive ones. It follows that high priority IDs are those
with low values, while low priority IDs have high values. The
ECU sending the dominant frame completes the transmission,
while the rest of the ECUs become receivers. When the bus is
free again, the ECUs which lost the arbitration will attempt to
re-transmit their messages.

A CAN frame is composed of several fields:
• Start of frame – 1 bit
• Identifier (ID) – 11 bit or 29 bit in the extended version,

it identifies the frame and denotes its priority.
• Remote Transmission Request (RTR) – 1 bit, it is

dominant or recessive for, respectively, data and remote
request frames.

• Identifier extension bit (IDE) – 1 bit, it is dominant or
recessive for, respectively, the standard 11-bit identifier
and the extended version.

• Reserved – 1 bit, reserved for future use.
• Data Length Code (DLC) – 4 bit, it indicates the length

of the payload, expressed in bytes.
• Payload – between 0–8 Byte, it carries the actual content

of the frame, encapsulated in bits.
• Cyclic Redundancy Check (CRC) – 15 bit
• Acknowledge (ACK) – 1 bit, recessive when the frame

is sent.
• End of Frame (EOF) – 7 bit
• Inter-frame spacing (IFS) – 3 bit, must be recessive.

Figure 5 shows an example of a CAN frame with a payload
of 8 Byte.

Released in 2012 by Bosch, CAN Flexible Data-Rate (FD)
– ISO11898-1:2015 [5] – is an enhanced version of the CAN
protocol. It was designed to meet the automotive industry’s
need for a higher bandwidth to support the steady increase in
the number of ECUs present in vehicles. The main advantage
of CAN FD over the original CAN is the dual bit-rate. While
maintaining the same bit rate of the arbitration phase, the
payload can be transmitted at a higher bit rate, allowing
the payload length to increase from a maximum of 8 Byte

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 9

Table II
CATEGORIZATION OF CAN REVERSE ENGINEERING INTO MANUAL, SEMI- AND FULLY-AUTOMATED.

Manual Semi-Automated Fully-Automated

Human expertise High Low None
Context Dependent Dependent Partially or fully independent
Data Collection Time Hours to days Minutes to hours Seconds to minutes
Decoding time Hours to days Minutes Minutes
Scalability Low Medium High

Start ID RTR IDE Res. DLC Payload CRC CRCDel. ACK
ACK
Del. EOF IFS

Start
1 b

Arbitration
11 b 1 b 1 b 4 b

Control
1 b

Data CRC ACK End IFS
0-8 B 15 b 1 b 1 b 1 b 7 b 3 b

B
y
t
e

N,

0
1

7

Bit N.

...

Figure 5. Example of CAN frame with an 8 Byte payload. In the payload,
different colors represent different signals.

to 64 Byte. As a consequence, CAN FD achieves a higher
communication bandwidth up to 5 Mbit/s (with a 40 m-long
bus). In addition, an improvement in the CRC field and
algorithm makes CAN FD more reliable. Related work on
reverse engineering has solely focused on CAN 2.0. Hence,
CAN will henceforth refer only to the version 2.0.

B. Data

OEMs encode CAN data using their proprietary format.
The information related to the location and the interpretation
of CAN signals is usually hidden from the general public.
Signals are chunks of payload which describe the vehicle’s
behavior. Each signal provides real-time information related to
the vehicle’s telemetry or function, such as door status, current
angle of the steering wheel, current speed. Every signal is
characterized by:

• Boundaries – represent the start and end bit of the signal
within its frame. The interpretation of the position varies
with the endianness.

• Endianness – is the order in which data is sent over a
communication channel. In the Big Endian (BE) format,
the bytes are ordered from the most significant to the least
significant. By contrast, according to the Little Endian
(LE) format, the bytes appear from the least significant
to the most significant. In BE, the bits follow the same
order as the bytes, i.e., the most significant bit appears
first and then the significance decreases until the last bit.
So, this format is easy for humans to interpret because it
is our usual way of reading decimal numbers. In contrast,
in LE, the significance of the bits does not represent the
significance of the bytes.

• Semantic meaning – represents the telemetry/vehicle
function that the signal encapsulates.

• Signedness – indicates whether the signal is signed or
not, i.e., if the first bit corresponds to the most significant
bit or to the sign of the signal. Signals that are signed
usually refer to telemetries that can have negative values,
e.g., the outdoor temperature or the angle of the steering
wheel.

• Format – typically, the value v of a physical signal s
is not immediately human-interpretable by parsing its
value from binary/hexadecimal to decimal. Given the raw
decimal value r, v can be obtained by applying a scale
factor f and an offset o according to the formula:

vs = fs · rs + os (1)

Note that scale factor and offset can be 1 and 0, respec-
tively. In this case, a parsing to decimal value is sufficient
to interpret the signal.

Additionally, frames associated with the same ID traditionally
contain the same signals. Hence, once the position, meaning,
and format of the signals related to a certain ID are known,
its frames can be interpreted at any time.

C. Taxonomy of CAN Signals

According to [61], [63], [64], signals can be grouped into
the following categories (see Figure 6):

• Physical – embed the dynamics of a vehicle. They are
typically equal to, or longer than 6 bit and are mostly
related to the activities in the powertrain. They carry
information about telemetries related to critical real-
time events, such as vehicle speed, steering wheel angle,
and engine temperature. Physical signals can be divided
into directly Signals that are directly coupled either
share a common pattern of behavior (e.g. the wheel
speed) or are linked by causation and effect (e.g. brake
pedal and Revolutions Per Minute (RPM)). Indirectly
coupled signals are ones in which the correlation with
others physical signal must be deduced in a way that is
not straightforward.

• Status – represent a limited set of options, or states.
Marchetti and Stabili [64] divide the status signals into
multi-value and binary. Multi-value signals are typically
between 2–4 bit long and can represent more than two
states. An example of multi-value status signal is the wiper
speed. By contrast, binary status signals can represent
only two options, e.g., on/off or open/closed. Recently,
we further divided the binary signals into continuous and
blinking [60]. Continuous status signals, once triggered,
preserve their new status until they are deactivated. In

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 10

CAN
signals

Physical Counter Checkcode Status Constant

Binary Multi-valueDirectly
Coupled

BlinkingContinuous

Indirectly
Coupled

Figure 6. Taxonomy of CAN signals.

contrast, blinking signals, once activated, continuously
change their status from 0 to 1, and vice versa, until they
are switched off.

• Counters – behave like cyclic counters.
• Checkcodes – checkcodes, or checksum, within the

payload that complement the CRC field.
• Constant/Unused – consecutive bits that never change

their status and that do not encapsulate any vehicle
function or telemetry. They are used as buffers between
signals.

D. CAN Data Collection

The most common way to log the data from the CAN bus
is to physically connect a CAN logger to the bus. There are
several models of CAN loggers commercially available, the
most popular being the CLX000 series by CSS Electronics
[65], PCAN by PEAK System [66] and Leaf by Kvaser [67],
as well as projects for open-source boards, such as Arduino
[68] and Raspberry Pi [69].

CAN loggers are typically equipped with a male 16-pin
(2x8) J1962 connector (ISO 15031-3 [70]), have a timestamp
resolution in the order of µs, and can automatically detect
the bit rate of the CAN bus. In addition, some loggers have
a USB or WiFi interface and can store data locally or on a
cloud platform. A logger usually outputs a log, or trace, as a
text file containing the list of received frames, sorted by the
timestamp and reporting the DLC, ID, and payload (expressed
in hexadecimal values). Figure 7 provides an example of a
CAN trace.

At the time of this writing, the most straightforward way to
attach a logger to the CAN bus in most vehicles is through the
OBD-II port. The OBD-II port is based on a female 16-pin
(2x8) J1962 connector, and it is commonly located within 0.6 m
from the steering wheel [71]. It is present in most modern
gasoline-engine-powered vehicles worldwide as it was enforced
in the US and EU, respectively, in 1996 and 2001, and later
in a number of other countries. Its purpose is to allow the
diagnostic of emissions-related parameters from a vehicle by
sending CAN messages, identified by OBD-II PIDs [72]. An
example of OBD-II port is shown in Figure 8.

Unlike CAN IDs, OBD-II PIDs are defined by the OBD-II
protocol. Most of OBD-II PIDs are public and therefore
compatible with all the vehicles equipped with an OBD-II
port. OBD-II typically allows the logging of both diagnostic

Figure 7. Example of a CAN log extracted with a PCAN from a BMW X1,
model year 2015.

Figure 8. OBD-II port in a Cupra Formentor, model year 2021.

and general-purpose CAN frames. Recently, however, a number
of OEMs have started placing a firewall between the OBD-II
port and the CAN bus, thus preventing the logging of non-
diagnostic CAN data. Extraction of data from vehicle models
with such a restriction requires identification of the CAN wires
and use of an insulation piercing clip or connector with an
adaptor for the CAN logger.

E. Database CAN (DBC)

The DBC file type is the standard to store the information
for the interpretation of CAN signals from their raw format
into a human readable version. Designed in the 1990s by
Vector Informatic GmbH [73], the DBC file type contains a
complete description of the position, semantic, and format
of CAN signals, as well as their minimum and maximum
theoretical value and the unit of measurement. DBC files can
be used as input in a variety of tools, such as CANtrace [74]
and CANalyzer [75], that can convert the data and provide a
real-time human-interpretable reading of signals transiting the
bus. Figure 9 provides an example of DBC file.

As discussed in Section I, OEMs keep the instructions for the
interpretation of CAN data hidden to the general public. The
original DBC files owned by OEMs are typically unavailable to
researchers and aftermarket companies. Thus, the only viable
option to obtain the ground truth of a vehicle model CAN
data is to acquire it from third-party technicians or expert

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 11

BO_ 1A1 ENGINE 6:

SG_ EngineRPM 32 | 16: @ 1+ (0.1, 0) (0, 8000) °

Frame
Syntax

Frame
ID

Frame
Name

Length
(Byte)

Signal
Syntax

Signal
Name

Bit position |
Length

Endian
Sign

Scale,
Offset

Min,
Max value

Unit

Figure 9. An example of format description in a DBC file. The upper line of
the figure represents the syntax of the frame, while the line below reports the
signal EngineRPM within the frame.

BO_ 28 WHEEL_SPEEDS: 8 XXX
 SG_ RR : 55|16@0+ (0.01,-100) [0|65535] "" XXX
 SG_ RL : 39|16@0+ (0.01,-102) [0|65535] "" XXX
 SG_ FL : 7|16@0+ (0.01,-100) [0|65535] "" XXX
 SG_ FR : 23|16@0+ (0.01,-100) [0|65535] "" XXX

BO_ 259 NEW_MSG_5: 8 XXX
 SG_ NEW_SIGNAL_1 : 15|8@0+ (1,0) [0|255] "" XXX

BO_ 260 NEW_MSG_6: 8 XXX
 SG_ NEW_SIGNAL_1 : 15|8@0+ (1,0) [0|255] "" XXX

Figure 10. An example of wheel speed signals – front left (FL), front right
(FR), rear left(RL) and rear right (RR)– from a generated DBC (OpenDBC)
extracted from a Mazda 3, model year 2019.

companies in manual reverse engineering. We define a DBC
obtained through manual reverse engineering as generated.

Generated DBC files are generally reliable, but signals and
frames are not fully decoded, and hence they do not cover all the
ground truth information related to the target vehicle. Figure 10
illustrates an example of generated DBC file from the known
open repository Open DBC by Comma AI [76]. Note that the
four wheel speeds have been almost fully reverse engineered
except for the unit, while for others only the boundaries have
been identified, with no information related to their semantic
meaning (and, supposedly, scale factor and offset as well).

F. Key Takeaways

In this section, we introduced the CAN protocol and provided
background information on the data collection and storage
process. The following is a list of the most important takeaways
from this section:

1) The totality of today’s vehicles are equipped with one or
more CAN buses, which are the shared communication
means for the vehicle’s ECUs.

2) The data transiting on CAN bus is not encrypted and the
ECUs are not authenticated.

3) The ECUs send messages or frames that contain multiple
signals. Each signal contains one vehicle function. Despite
the lack of encryption, each signal is not easily inter-
pretable since it is encoded according to the proprietary
format of the OEM.

4) The most popular entry point to the CAN bus is the
OBD-II port, which is typically used for diagnostics.

Nonetheless, many manufacturers are blocking indiscrim-
inate access between this port and the CAN bus through
secured gateways.

5) The background information related to CAN data formats,
including the result of reverse engineering, is contained
in DBC files.

IV. AUTOMATED CAN BUS REVERSE ENGINEERING

The objective of CAN reverse engineering is to locate the
position of signals within frames, also known as tokenization,
and translate their semantic meaning and format, as presented
in Section III-B. Figure 11 summarizes the CAN reverse
engineering process.

In this section, we examine the literature about CAN
tokenization and signals translation individually. This is due
not just to the fact that numerous works focus simply on
tokenization or translation, but also to highlight that these
two processes are complementary and consecutive, and can
therefore be evaluated separately. Figure 12 provides a complete
taxonomy of the work on CAN reverse engineering.

We conclude by comparing the techniques and outcomes of
the presented studies.

A. Tokenization

The goal of tokenization is to identify the sequence of bits
that correspond to each signal within the payload of the frames.
The resulting output, the tokens, can be described as signals
whose location in the payload is known but whose semantic
meaning and format have yet to be translated.

The first step, common to all tokenization approaches, is
the decomposition of the CAN trace in sub-traces, one for
each ID. Each sub-trace is ordered according to the timestamp,
and corresponds to the time series of frames associated with
the same ID which, thus, carry semantically consecutive data.
Figure 13 illustrates the process of decomposing a CAN trace
into multiple sub-traces.

As highlighted in Figure 12, after this step the related work
proceeds following one of two approaches: (i) extract the set of
tokens that maximizes a score function among a set of possible
token combinations, or (ii) compute the Bit Flip Rate (BFR)
array from the payload time series, and scan it to identify
boundaries based on drops in the value.

1) Tokenization based on combinatorial optimization: While
developing an anomaly detection system, Markovitz and Wool
[63] were the first to design an algorithm for tokenization in
CAN. They were also the first to identify different categories of
signals: physical, constant/unused, multi-values, and counters.
The authors proposed an approach based on a 64x64 triangular
matrix, which is employed to evaluate all possible 2080 tokens
within the frame payload (they considered only payloads with
the maximum length of 8 Byte). For each candidate token, the
number of distinct values assumed in the trace is calculated.
Constant/unused portions of the trace are identified by the
fact that they assume only one value throughout the trace,
while multi-values are characterized by a limited number of
values. According to the authors, physical signals and counters
are signals with high density, i.e., a large number of values

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 12

Data logging

Step

Tokenization

Translation

01011010 10101011 01001100

Output

01011010 10101011 01001100
T1 T2 T3 T4

Example

CAN raw data

Tokens

DBC File

1A4 5AAB4C3 ...
ID DLC Payload

BO_ 1A4 Transmission: 3 XXX
 SG_ Paddle_Shift : 0|2@1+ (1,0) [0|3] ""
 SG_ COUNTER : 2|6@1+ (1,0) [0|15] ""
 SG_ Transmission_Engine : 8|12@1+ (1,0) [0|65535] ""
 SG_ Manual_Gear : 20|4@1+ (1,0) [0|15] ""

Figure 11. CAN reverse engineering process.

PIDs Injection
[21,22,23,41,
81,86,87]

ML Frame matching
[24]

Companion apps Semantic taxonomy

Supervised Unsupervised

Hierarchical
Clustering

[25,82]

Density-based
Clustering

[24,25]

Deep
Learning
[23,81]

Other
algorithms

[20,80]

Using OBD-II
dongle apps

[86,87]

Using IVI
apps
[86]

Unaware
human
effort

Aware
human
effort

[40,41,57

CAN Reverse
Engineering

TranslationTokenization

Combinatorial
optimization
[21,22,63,77]

Bit Flip Rate
[24,61,64,78,79]

Figure 12. Taxonomy of CAN reverse engineering.

Ts (μs) ID DLC Payload

0 12E 8 C980057FE0FFFF00

125 90 5 00000EB600

389 0C6 8 80AB80008002BC16

30190027 12E 8 80AB7FF68002B22B

30100144 90 5 0000094F00

…

Ts (μs) DLC Payload

0 8 C980057FE0FFFF00

30190027 8 80AB7FF68002B22B

Ts (μs) DLC Payload

125 5 00000EB600

30100144 5 0000094F00

…

…

…

ID: 90

ID: 12E

Figure 13. Decomposition of a CAN trace into N sub-traces.

theoretically available are displayed by the signal during the
trace. A score is attributed to each candidate signal based on
the specific characteristics of its category. Through a greedy
algorithm, the authors identify the final set of non-overlapping
tokens according to their scores.

The primary limitation of this study is the brute force method
used to analyze every potential token boundary combination,
which incurs a considerable computational cost.

Verma et al. [22] present Automatic CAN Tokenization and
Translation (ACTT), an algorithm that performs tokenization

and translation of the signals simultaneously. The method
initially identifies the portions of the target trace triggered
by PID requests injected through the OBD-II port during the
driving session in the target vehicle and obtains labeled time
series. The constant bits are then extracted for each ID and
all the possible combinations of tokens are computed on the
rest of the bits. A fitness score is calculated between the
time-series of each token in the set and the Diagnostic IDs
(DIDs) time series using a linear regression. Finally, a dynamic
programming-based scheduling algorithm outputs the set of
non-overlapping tokens which maximizes the overall fitness
score.

The main shortcoming of this work is the intrusiveness of
injecting PID (in Section IV-C we provide a detailed definition
of intrusiveness in the context of CAN reverse engineering).
Also, as recognized in the authors in a subsequent work [21],
ACTT tries to address the endianness, but erroneously consider
the bit order instead of the byte-order, which truly defines the
endianness in CAN bus [21].

The AutoCAN tool proposed by Frassinelli et al. [77] is
equipped with a tokenizer based on a greedy approach. For
each ID, the tokenizer starts from the first bit of the payload and
iteratively adds bits to define the other boundary of the token.
At every iteration, the algorithm evaluates the plausibility of the
considered token by verifying that its properties match those
of any of the signal categories (physical, counter, checksum,
status). Assuming a token starting at position i and its currently
investigated end bit be at position j, if the token (i, j) is
plausible, a new bit is added and a new plausibility check

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 13

is performed. Otherwise, a boundary is identified in position
j − 1, and j is the start bit of the following token. Finally,
he authors also refer to the little-endianness. However, they
do not specify how to distinguish little-endian signals from
big-endian signals, which were not mentioned.

This approach constitutes a major novelty in the field of
combinatorial optimization-based tokenization, as it is the first
to iteratively evaluate sequences of consecutive bits with a
mono-directional scanning of the payload. The main benefit is
a substantial reduction of the computational cost compared to
previous works.

In their tool, CAN-D, Verma et al. [21] propose an approach
that considers the conditional probability of each bit bi flipping,
and the difference between the conditional bit flip probabilities
of the following two bits. Once the probability of each bit in the
payload of being a signal boundary is calculated, the algorithm
extracts the set of all possible valid tokens. This set includes
also tokens in little-endian format, which have been extracted
independently of each other. The authors evaluate the possibility
that a single payload can contain tokens encoded according
to different endianness. In fact, they observe that, while no
case of signals within the same payload but with different
endianness has been recorded, the CAN protocol does not
indicate constraints regarding this possibility. An optimization
algorithm aims to find the optimal balance between partitioning
the payload into too many signals and allocating too many bits
to the same signal.

This algorithm can provide distinct outputs. In this case, the
solution that includes the highest number of signals overall
and the highest number of big endianness signals is chosen
as optimal. Both approaches were tested on 10 vehicles from
different manufacturers and mostly validated against generated
DBC files provided by OpenDBC. The results show an average
F-Score, accuracy, and precision around or superior to 90 %.

The main constraint of this work is the ambiguity resulting
in producing distinct outputs. The methodology selected by the
authors to address this issue should be evaluated on a larger
number of test vehicles.

2) Tokenization based on BFR: Marchetti and Stabili [64]
and Nolan et al. [78] introduce, respectively, Reverse Engi-
neering of Automotive Data frames (READ) and Transition
Aggregated N-Grams (TANG), which are tokenization algo-
rithms based on the BFR.

For each ID time series, a BFR array B = [b0, b1, . . . , bn]
is calculated, where n is the length of the frame payload. Each
element bi corresponds to the BFR of the ith bit throughout the
time series. A bit flip corresponds to a change in the status of
a bit in a consecutive payload, from 0 to 1 or vice-versa. The
total Bit Flip Count (BFC) is the number of times a bit flips
throughout the time series. Let F be the number of consecutive
payloads that constitute the time series. BFR is then calculated
as BFC/(F - 1). The BFR array is then scanned from left to
right looking for a significant drop in the BFR between bi and
bi+1. When such a decrease in the BFR occurs, a boundary
between two signals is found. Figure 14 illustrates an example
of tokenization based on BFR.

The underlying rationale behind this approach is that the least
significant bits of physical signals usually flip more than the

00000.010.020.030.05
Byte 1 Byte 2

Bit Flip Rate Array

0.11 0.18 0.3 0.45 0.01 0.02 0.03 0.050.12 0.21 0.42 0.60 0.75 0.88 0.94 0.97

Search for drops in the BFR value

00000.010.020.030.050.11 0.18 0.3 0.45 0.01 0.02 0.03 0.050.12 0.21 0.42 0.60 0.75 0.88 0.94 0.97
Token 1 Token 2 Token 3

0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1
0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1

0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1
0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1

...

ID: 15A

Payload

Computer Bit Flip Array

Frame n.
1

634

2

635

...

Figure 14. Example of tokenization of the ID 15A. The BFR is calculated
on the payloads of consecutive frames associated to the ID. The array is
scanned from left to the right to look for drops in the BFR values. Through
this technique, 3 tokens are found.

most significant bits, due to the deterministic and continuous
nature of the phenomena that these signals represent. As a
consequence, when a consistent decrease in the value is found
between bi and bi+1, bi is likely to be the least significant bit
of the current signal, while bi+1 the most significant bit of the
next signal. A difference between READ and TANG is the
factor defining the minimum decrease in the bit flip to identify
a boundary: 2 for TANG and 10 for READ.

Despite being early works in the field of CAN tokenization,
READ and TANG provide convincing level of completeness.
In fact, the majority of subsequent works on BFR-based
tokenization apply tweaks and additions to the heuristics used
by these two algorithms.

READ has been further improved by Pesé et al. [61].
Specifically, the authors express the decrease in two consecutive
BFR as a percentage, which allows to identify the optimal
threshold with a higher precision. In this work, the authors
are the first to define two metrics, CE/TE and CE/TBDC, for
the evaluation of tokenization algorithms. Correctly Extracted
(CE)/Total Extracted (TE) is the ratio between the number
of tokens CE and the total number of tokens extracted (TE)
and measures the precision. CE/TBDC is the ratio between
the number of tokens correctly extracted (CE) and the Total
number of signals in the DBC file (TDBC) related to the target
vehicle.

Buscemi et al. [24] embed in their tool, CANMatch, a
tokenization algorithm based on READ and LibreCAN [61],
which, unlike these two approaches, extracts the endianness
of the tokens. Following the assumption of [78], the authors
evaluate the endianness for the whole payload. In this approach,
when analyzing the BFR, two set of tokens are extracted, one
following the assumption of little endianness and one based
on big endianness.

When little endianness is taken into account, the order of the
bits is inverted within the single bytes of the BFR array (not
across the whole array as done in [22], [78]). Such a version

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 14

00000.010.020.030.050.02 0.04 0.08 0.17 0.03 0.06 0.12 0.210.30 0.41 0.52 0.60 0.65 0.78 0.84 0.85

lsblsb msbmsb

00000.010.020.030.050.85 0.84 0.78 0.65 0.60 0.52 0.41 0.300.21 0.12 0.06 0.03 0.17 0.08 0.04 0.02

lsb lsbmsb msb

00000.010.020.030.050.21 0.12 0.06 0.3 0.17 0.08 0.04 0.020.85 0.84 0.78 0.65 0.60 0.52 0.41 0.30

lsblsb msb msb

Scan

Scan

A) Reverse bits across the payload

B) Reverse bits within single bytes

Original BFR

Figure 15. Reversing the bits across the payload [22], [78] vs. reversing the
bits within single bytes [24] to extract little endian signals.

of the BFR array is scanned from the end to the beginning
and the tokens are extracted according to the same heuristic
used for the big endianness, as illustrated in Figure 15. For
the big endianness, instead, the tokens are extracted following
LibreCAN’s approach.

Once a subset of tokens is extracted assuming each endian-
ness, a likelihood score is calculated to determine the final set of
tokens. Note that, while the usage of a likelihood score recalls
optimization-based algorithms, this step is solely employed to
evaluate the endianness, not the boundaries. Hence, CANMatch
is considered to be a BFR-based approach.

Based on a test set of 15 vehicles, CANMatch shows similar
or same accuracy as [64] and [61] on big endian signals.
Furthermore, the tool can tokenize little endian payloads with
an accuracy of 60 %.

Choi et al. [79] argued against the assumptions made by
Marchetti and Stabili [64] regarding the BFR of checkcodes
and counters. Regarding the checkcodes, the authors observe
the BFR values are not always distributed around 0.5. Their
algorithm starts from a reference BFR of 0.3 and continuously
checks whether this property is consistent throughout the trace.
The algorithm simply observes whether the overall value of
a counter has incremented by 1 at every new frame sending.
The authors present a methodology to identify physical signals
as well, which does not calculate the BFR array on the whole
payload time-series. Following a sliding window approach, the
algorithm generates multiple sub-time-series, or windows, and
calculates a BFR array for each of them. Then, each bit is
evaluated independently. The BFR related to the windows are
put in one time-series for each single bit and a correlation
with the following bit is searched. When correlations are found
between two or multiple consecutive bits, they are labeled as
belonging to the same signal.

Its main limitation is the assumption that the observed value
of the counter increases by exactly 1 upon sending each frame.
Counters related to physical phenomena, such as the fuel
consumption counter, can speed up or slow down according
to the progression of the telemetry taken into consideration.

PIDs

Machine Learning

Semantic Taxonomy

Frame Matching
Companion

apps

CANMatch [24]

[DP-Reverser [87]

Huybrechts
et al. [23]

CSI [20]

ACTT [22]
LibreCAN

[41]

Ezeobi et
al. [25]

Young et
al. [82]

Buscemi
et al. [40]

AutoCAN [57]

CAN-D [21]

Moore et
al. [81]

Supervised Unsupervised

CANHunter [86]

Jaynes et
al. [80]

Figure 16. Grouping related work on CAN translation based on the first layer
of the taxonomy.

As a consequence, while displaying a clear cyclic behavior,
i.e., a monotonic increase in the values followed by a reset,
their value can change by more than 1 between sending of one
frame and the next frame.

B. Translation

The goal of translation is to disclose the signedness, offset,
scale factor, and unit (in case of physical signals) of the found
tokens. We propose to categorize the work related to translation
according to the methodology adopted: (i) based on PIDs, (ii)
based on ML, (iii) based on semantic taxonomy, (iv) based on
frame matching, (v) based on companion apps. We then divide
each of these categories in subcategories to further distinguish
the underlying logic followed in these approaches, as shown
in Figure 12.

It is to be noted that a significant number of the studies
presented in this survey are based on more than one approach.
To better illustrate the differences and commonalities between
these works, we group them according to the first layer of
our taxonomy (see Figure 16). However, for readability, in the
following section we present each work in the category that
describes its most distinctive characteristics.

1) Translation based on PIDs: The algorithms belonging
to this class are based on injecting PIDs through the OBD-II
port and observing the subsequent changes in the traffic.

Huybrechts et al. [23] were the first to exploit OBD-II
PIDs in the scope of CAN reverse engineering. They log
CAN data while driving in a dynamic context and injecting
diagnostics requests. Then, the tool compares each byte (or
combination of bytes) of the collected traffic with the triggered
diagnostic signals and calculates the similarity between them.
The semantic meaning of the chunk of traffic scoring the
highest similarity is then identified. The tool is tested on two
gas-fuelled vehicles and validated against a generated ground
truth, managing to map around 10 % of the traffic in the two
vehicles.

In their tool, CAN-D, Verma et al. [21] are the first
to introduce a translation method capable of decoding the

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 15

signedness of the signals. The signedness is decoded based
on the assumption that if a token is signed, both of its most
significant bits flip from 0 to 1 when it goes from positive to
negative values, and from 1 to 0 vice versa. The logic behind
this approach is that signed signals have continuity in the value
of two most significant bits while, in the case of unsigned
signals, the flipping of such bits represents changes in the
value of the signal which is unlikely to represent telemetries
in the real world. The translation of the signals’ format is a
continuation of the work in [22] (see Section IV-A) and consists
of finding linear correlations between the extracted tokens and
diagnostic messages. Based on a testing set composed of 10
vehicles, whose ground truth is available in CommaAI, CAN-
D achieves a reduction of 20 % in the l1 error between the
translated signals and the ground truth compared to LibreCAN.

Summary: The injection of PIDs is a useful approach that
can be employed to accurately translate a number of signals
critical for the functioning of the vehicle. In particular, since
the formats of the responding signals are publicly available,
once the semantic of a signal has been correctly identified,
its format becomes also known, and it can be used for the
identification of other semantically related signals. The main
limitation of this approach is that not all the signals can be
triggered through diagnostic requests, in particular those not
related to the powertrain.

2) Translation based on ML: ML is used in the scope of
CAN reverse engineering to identify the semantic of signals
(supervised learning) or infer correlations between signals
(unsupervised learning).

Jaynes et al. [80] were the first to attempt fully automated
reverse engineering of CAN bus. They propose an ML approach
based on three features – ID, sending frequency, and payload –
to identify the semantic meaning of the frames, i.e., what is
the vehicle function that they carry. After training a variety
of ML classifiers on frames related to five functions in nine
vehicles, the authors achieved a precision and recall higher
than 80 % with an Nearest Neighbor (NN) classifier against a
generated ground truth. However, as indicated in [21], since
this work treats the frame payloads as a whole, this approach
is not suitable for the translation of individual signals.

Buscemi et al. [20] aim to fix the shortcomings of Jaynes
et al. [80] on fully automated semantic translation with ML
supervised classification. The authors present Critical Signals
Identifier (CSI), a tool based on training an ML classifier to
label signals without external data (except for the notion that
the vehicle is driven in a dynamic context and then parked).
Unlike [80], CSI is not applied on the whole payload but on
independent signal. The signals are subdivided into four groups
according to their length, and specific features are extracted for
each group. The goal is to have a more accurate representation
of the signals belonging to each group. The authors validate
CSI on a set of 69 distinct vehicle functions present in eight test
vehicles divided into foreground set (10), i.e. signals covering
functions considered critical, and background set (59), i.e. the
others. CSI correctly classifies the signals in the foreground
set with a weighted accuracy of 93 %. However, all the tested
signals are not obtained through tokenization but extracted
from generated DBC files. Given that a CAN trace usually

contains a larger number of signals, the accuracy achieved by
the tool might be inferior in a real-world scenario.

Huybrechts et al. [23] are the first to make use of Deep
Learning (DL). The authors propose an alternative approach
to the injection of PIDs, which makes use of Long Short-
Term Memory (LSTM), a type of NN particularly suited for
time-series classification. The LSTM is trained to identify the
semantic meaning of signals in a target vehicle, based on
their experience gained on CAN signals of known vehicles. In
addition to the features extracted from the CAN traffic, the
training samples of the LSTM model are built up with features
generated from Global Positioning System (GPS) data, such as
speed, heading, latitude, and longitude, etc. These additional
GPS features aim at providing further knowledge of the vehicle
status.

An accuracy of up to 90 % is achieved by this second
approach. The main limitation of both approaches is the absence
of tokenization. The authors wrongly assume a coincidence
between signals and payload bytes, which does not make it
suitable for signals that are shorter than one byte and/or whose
boundaries are not the most significant bit and least significant
bit of the bytes.

Moore et al. [81] aimed to provide a full mapping of the
time relations between the speed-related signals and distinguish
the different states of the vehicle in a semi-supervised manner.
The authors initially exploit PIDs to identify the speed-related
signals. Subsequently, they employ a combination of Hidden
Markov Model (HMM) and Convolutional Neural Network
(CNN) to understand the causality between the actions of the
driver and the observed data. The authors explore four states
of the vehicle speed: acceleration, deceleration, maintain (the
speed is constant) and idle (the vehicle is parked). The results
show an average accuracy in the identification of the states
higher than 90 %.

Ezeobi et al. [25] and Young et al. [82] adopt unsupervised
ML techniques in the field of CAN reverse engineering. In
[25], the authors test several clustering techniques, such as
Agglomerative Hierarchical Clustering (AHC) [83] and Density-
based spatial clustering of applications with noise (DBSCAN)
[84], to determine sets of frames which are semantically related.
They evaluate their approach against a set of four vehicle
models belonging to the same OEM. For validation, the authors
employ generated DBC from OpenDBC. AHC identifies four
distinct clusters related to an equal number of vehicle functions,
achieving an Fowlkes-Mallows (FM) Index [85] of over 70 %.
Similarly to [20] and [81], this approach provides the semantic
meaning of a limited number of signals. However, it is the first
to show that clustering may be used to get a basic overview
of the trace and focus reverse engineering on a restricted set
of frame IDs.

In [82], instead, the authors perform a series of operations
within the vehicle at data collection time and manually label the
CAN traffic in different time spans accordingly. The CAN log
is split in sub-traces, one for each ID, and the time-status labels
are used to find correlation between the time-series of an ID
and a function of the vehicle. Then, an AHC algorithm is used
to identify the similarity degree between different frame series.
Following this approach, the authors manage to identify eight

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 16

frames containing five distinct gas-fuelled vehicle functions.
Similarly to [80], this approach is limited, in the sense that the
extracted information, while offering a high-level understanding
of the frames, does not address the individual signals.

Summary: ML-based algorithms are useful to identify
and/or group signals based on their semantics in a completely
automated manner, and thus provide a clear overview of
the dependencies in the data traffic. The main limitation of
approaches based on supervised learning is that the translation
performance also depends on the quality of the ground truth
which in the case of manual labeling, is prone to human errors.
By contrast, unsupervised learning can be employed in any
circumstance, but the results can be difficult to interpret.

Note that data processing and feature engineering are very
diverse among the presented translation methodologies. Given
that the accuracy of ML models is highly affected by the quality
of the data received in input, no conclusive results have been
reached about which algorithms provide the best classification
or clustering of CAN signals. Thus, this topic requires further
investigation.

3) Translation based on semantic taxonomy: This approach
exploits the intrinsic properties of groups of semantically
similar signals and the relations that link these groups. A
deep understanding of the nature of signals is required, as well
as the capability of transposing this knowledge into a software
representation. Translation based on the taxonomy of signals
requires operations performed in the vehicle that reflect the
nature of the searched signals. A human operator is in charge
of conducting a precise list of actions in order to complete
the data collection. Hence, all work based on the taxonomy of
signals is semi-automated.

A first attempt, called LibreCAN, to provide a complete
CAN reverse engineering pipeline has been made by Pesé
et al. [61] which presents a three-phased algorithm. For the
data collection, the authors employ a commercial mobile app,
installed in the vehicle and duly aligned, to capture Inertial
Measurement Unit (IMU) and GPS data related to the driving
session. During the driving session, they inject OBD-II PIDs
to trigger the responses in the bus. Additionally, another trace
is collected, where a human operator is instructed through an
app to perform specific procedures in the vehicle in order to
activate body status signals, such as door locks, seat belts, etc.
A reference trace, where no action is performed in the vehicle
is also logged.

The semantic translation of the signals is performed by
searching for correspondences between the extracted tokens,
the PIDs and the IMU/GPS data, through normalized cross-
correlation. Once the semantic meaning of the signals is
unveiled, LibreCAN performs a linear regression between the
raw values of the signals and the ground truth data to decode
the scale factor and offset. Finally, LibreCAN analyzes the
difference between the reference trace and the trace related to
the body in order to spot the status signals.

LibreCAN is evaluated on four commercial vehicles and
validated against the original DBC files provided by the
manufacturer. The tests achieve a precision of 82 % in the
identification of powertrain signals (phase 2), and an accuracy
of around 95 % in the decoding of body signals (phase 3).

Furthermore, the authors investigate how the length of the
CAN log influences the performance of the algorithm. The
results show that driving a vehicle for 30 min in a dynamic
context is sufficient to optimize the reverse engineering of
the powertrain signals. Moreover, the human operator takes
10 min on average to perform all the due operations for the
body signals related trace.

This is the first attempt at non-fully manual CAN reverse
engineering that has been successful. By evaluating the ability
of a number of people with precise instructions given, the
authors have demonstrated that human expertise is no longer
required to perform reverse engineering.

Frassinelli et al. [77] present AutoCAN, an approach that
is based on finding a chain of correlations between tokens. A
small set of tokens (extracted with the methodology presented
in Section IV-A) are initially decoded by finding correlations
with ground truth data related to the current session, captured
through external sensors. Then, a number of mathematical
formulas are iteratively extracted through Abstract Syntax Tree
(AST) and applied to transform the rest of the tokens time
series and find correlations between the output of each of
these transformation and the known signals. The underlying
rationale is that signals represent telemetries and events in the
real world, which are subject to the laws of physics. Hence, it is
possible to infer the relations between two tokens by testing all
the possible combinations of mathematical properties that link
different measurements in a physical system. For example, the
token related to the acceleration can be identified by calculating
the integral of each token and finding the most convincing
correlation with the vehicle speed (in this case, calculated
through the Pearson coefficient).

AutoCAN is tested on three Electric Vehicles (EVs) and one
fuel-propelled vehicle, and validated against generated DBC
files obtained from various sources. Its main limitation is the
assumption that all the reference signals, through which it is
possible to decode the rest of the traffic, can always be easily
identified. While this is a reasonable assumption for most of
the powertrain signals (e.g., using the GPS to preliminarily
identify the vehicle speed), it is not necessarily true for a
number of other signals, such as those concerning the battery
voltage. Finally, the authors report a data collection time of
several hours for each of the tested vehicle, which would not
qualify AutoCAN as a fully automated reverse engineering
approach. Nonetheless, the authors have not studied how the
performance varies with the length of the collected trace. There
is ample room for reducing the length of the logs required
to few minutes, while maintaining optimal or nearly optimal
performance.

Buscemi et al. [60] work on optimizing the semi-automated
taxonomy-based reverse engineering process. Instead of logging
one long trace, the authors suggest the collection of multiple
short traces, one for each group of semantically correlated
signals. Similarly to [61], a trace related to a session where
no action is performed is collected and used as reference. A
tokenization algorithm is run for each of these traces producing
different results. The final set of tokens is chosen through a
likelihood score that takes into account the taxonomy of signals.
Unlike [21], the signedness is extracted by parsing values of

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 17

the signal time series into raw positive decimals, and assessing
whether the time behavior is consistent. The translation of
physical signals is performed by computing the correlation
degree of each token with external ground truth (e.g., GPS).
Similarly to [61], the data collection requires a (non-expert)
human operator who has been provided precise instructions.

By testing this methodology on five vehicles from different
OEMs, the tool correctly identified the semantics of 24 signals
in about 70 % of cases, and achieved an error rate of less than
5 % in format translation, while cutting the data collection time
to 5 min.

Summary: Translating signals based on taxonomy is the
direct evolution of manual reverse engineering, making it sound
and reliable. Its downside is the requirement of an attentive
preliminary identification of the class of each vehicle function
of interest according to the taxonomy, i.e. prior to identifying
and translating the signal related to a certain vehicle function,
it is necessary to know what is its class.

While the identification of the right signal class for a target
vehicle function is intuitive for some signals, e.g., the fuel
consumption counter is clearly contained in a counter signal, it
might be non-trivial for many others. For example, is the wiper
a status or a physical signal? If it is status signal, is it binary
or multi-value? Furthermore, a semi-automated tool should be
updated to address the evolution of the electrical components
in the vehicle and the release of new mobility features and
services on the market. Finally, it still takes a non-negligible
amount of human effort and time for collecting the CAN data.

We believe that the full automation of taxonomy-based
reverse engineering is possible through a combination of
connectivity and prolonged training of ML models on CAN and
environmental data. In principle, the driver could contribute to
the reverse engineering unaware that the process is taking place.
In Section VI-A4, we discuss in detail the possible modalities
and implications of this reverse engineering scenario.

4) Translation based on frame matching: This approach
finds a direct match between the frames of the target vehicle
and the frames of other vehicles for which the ground truth
is known. When a match occurs, the signals contained in the
matched frame are attributed to the target frame, as well as
their format.

Buscemi et al. [24] proposed a tool, CANMatch, based on
frame ID matching. It makes use of DBC files from a number of
previously reverse-engineered vehicles. Following the analysis
of a large dataset of DBC files and traces, the authors observe
that an ECU model installed in any two vehicles does not
only send frames with the same vehicle function, but also
with the same ID. CANMatch consists of three phases. Phase
1 matches each frame in the target vehicle with frames of
vehicles whose ground truth is known (e.g., through manual
reverse engineering). The matching of frames is not always
straightforward as frames with the same ID carry different
contents. When there are multiple candidates for the match,
CANMatch deals with the ambiguity by calculating a similarity
score between the target frame and the candidate frames. Phase
2 performs the tokenization using the methodology presented
in Section IV-A. The goal of Phase 3 is to identify and
translate redundant signals by correlating the tokens to the

signals decoded in Phase 1. DBSCAN is used to speed up the
identification process while a linear regression is employed to
translate the format of the signals.

The authors test CANMatch on 1–2 min traces belonging to
15 different vehicles and a set of 477 generated DBC files for
the initial matching. CANMatch achieves a maximum recall
of up to 84 % and precision higher than 95 %. The validation
is also based on generated ground truth.

Summary: The advantage of frame matching-based transla-
tion compared to other approaches is that it does not require
any ground knowledge of the driving context nor the driver
itself, and uses neither OBD-II PIDs nor external sensors. Its
main limitation is the requirement for a large set of DBC
files in input. Assuming that no or few original DBC files are
available, to obtain such a ground truth set, it is necessary
to generate it with a different methodology, thus limiting its
overall benefit. In addition, its performance is tied with the
quality and diversity of the DBC files employed.

5) Translation based on companion apps: The goal of this
reverse engineering approach is to exploit companion apps,
which are mobile or desktop applications that actively interact
with in-vehicle networks, to automatically detect and translate
the signals.

Wen et al. [86] developed CANHunter, the first tool
automating CAN reverse engineering through the usage of
car companion apps. The authors categorize these apps into
In-Vehicle Infotainment (IVI), and OBD-II dongle apps. The
former are the official apps released by car makers and are
compatible only with a limited number of vehicles. They
connect the mobile phone to the vehicle through cellular
network or Bluetooth and offer a variety of features, from
starting the engine to controlling the door locks. OBD-II dongle
apps are typically developed by aftermarket companies (e.g.,
insurance companies) and require a dongle attached to the
OBD-II port to allow communication between the phone and
the CAN bus.

Since each app is built following a different logic and
architecture, the first challenge that the authors tackle is to
locate the generation path, i.e., to find the module sending
the requests to the CAN bus and understand its functioning.
They solve this problem by developing software that identifies
the standardized network APIs (always present to enable the
communication between the phone and the vehicle) and using
program slicing to find the source of the CAN requests.
Program slicing is a technique for streamlining programs
by focusing on specific semantic characteristics. The slicing
method removes elements of the program that have been judged
to have no effect on the semantics of interest, thus allowing
to focus on the relevant functionalities. After the generation
path is understood, the next step is to infer automatically
the syntax and semantic meaning of messages. CANHunter
achieves syntax recovery through forced execution, i.e., the
brute-force execution of commands in the generation path with
generic inputs. For the semantics, clues are searched in the
User Interface (UI) to relate the outputted strings with the
hard-coded commands.

The authors do not test CANHunter on real/physical vehicles.
Instead, they employ 236 free apps – 90 IVI and 146 dongle –

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 18

that can be downloaded from online app stores, e.g., Google
Play Store. Among those, 107 apps – 3 IVI and 104 dongle –
are successfully exploited to identify and decode the semantic
meaning of more than 150 000 signals. However, as highlighted
in Le Yu et al. [87], the majority of these apps are designed
for common drivers who want to extract ordinary information
from the vehicle. As a consequence, the majority of the signals
that can be obtained through these apps are responses to PIDs,
for which documents are already publicly available. In addition,
CANHunter does not provide the format of the signals, thus
disallowing the reuse of the extracted signals.

Le Yu et al. [87] proposed DP-Reverser, a tool that aims to
fix the shortcomings of [86] by exploiting apps that make use
of diagnostics communication protocols to obtain the semantic
and format of signals that are not publicly known. The authors
focus on Keyword Protocol (KWP) 2000 (ISO 14230 [88])
and Unified Diagnostic Services (UDS) (ISO 14229 [89]), two
widely known diagnostics communication protocols, which
allow the standardized injection of PIDs as well as querying
ECUs for other vehicle functions. The authors categorize
the apps into (i) professional handheld diagnostic equipment,
which includes all software and hardware necessary for the
communication with CAN, (ii) professional diagnostic software,
which is a desktop app with a UI that the user can consult,
and (iii) OBD-based telematics app, a mobile phone app that
connects to a diagnostic dongle attached to the OBD-II port.

To deal with the diversity of the diagnostic apps and bypass
the security features often present, DP-Reverser makes use of
a cyber-physical system emulating human interaction instead
of trying to reverse engineer the apps as in [86]. This system
is composed of two cameras that capture screenshots from the
UI and a robotic arm, or clicker, which is trained to provide
inputs to the platform. The events generated by the clicker are
timely correlated with the observed changes in the traffic. For
the translation of the format, DP-Reverser employs a genetic
programming algorithm. The algorithm starts from a small set
of randomly generated formulas to describe the format, and
based on the evolutionary principle of the survival of the fittest,
the next generation of formulas is calculated. The process
continues until one of the formula fits the observed behavior
of the signal.

In comparison to the linear regression adopted in related
work [22], [24], [61], this genetic approach adds a great deal
of sophistication to CAN format translation. Further research is
needed to investigate the full potential of this class of algorithms
for CAN reverse engineering.

The authors test DP-Reverser on 18 vehicle models and four
apps – two professional handheld diagnostic equipment and
two professional diagnostic software. A total of 446 signals –
290 physical/counters and 156 status – are identified with an
average precision of 98.3 %. Moreover, an accuracy of 100 %
is obtained for the format decoding.

Summary: Apart from the evident complexity in the initial
setting and calibration of all the components of companion
apps-based methodologies, the main limitation of this approach
concerns the apps themselves, which can be subject to a variety
of bugs and errors. In this case, it is unclear how unexpected
behavior of the apps can be handled or if this can potentially

drive the algorithms to output wrong decoding results.

C. Benchmarking

The methodologies presented so far are very diverse in terms
of requirements – such as software, hardware, and human effort
– testbeds, and evaluation metrics. All the solutions have been
tested on real CAN traces extracted from a diverse set of
vehicles in terms of brand, market segment, etc. In addition,
most of these projects have been developed in collaboration
with industry partners and are therefore not open-source. Their
technical details, as well as the models of the tested vehicles,
are also often protected by non-disclosure agreements, thus
making it difficult to reproduce them.

The analyzed studies focus on retrieving different informa-
tion regarding the CAN signals. For example, some studies
focus exclusively on finding the boundaries [63], [64], [78],
while others only seek to identify the semantic meaning of the
frames [25], [80], [82]. In addition, the varying granularity of
the decoding process in terms of extracted properties makes
the quantitative comparison of the solutions presented in this
survey difficult. Hereafter, we summarize and compare the
main characteristics of the presented methodologies.

Table III reports the types of tokens identified by the
tokenization algorithms and the approach followed to deal
with the endianness. All methodologies are listed according to
their approach. The table shows that most of the tokenization
algorithms are capable of identifying the majority of token
types, while only few address the endianness.

The table reports also the complexity of the algorithms
and the metrics adopted to evaluate the methodologies. As
highlighted in the table, the most popular metrics are CE/TE
and CE/TDBC (they are called with different names in many
works). However, it is to be noted that:

• There are different definitions of CE. For instance, ac-
cording to Pesé et al. [61] a token is correctly extracted
only if start and end bits correspond to the information in
the DBC file. By contrast, for tokens longer than 8 bits
Buscemi et al. [24] allow a margin of error up to the 4
least significant bits.

• CE/TDBC depends on the size and the reliability of the
DBC files employed in the research.

Table IV compares the translation methodologies. For each
algorithm, it recaps the employed approach and outlines the
requirements needed in terms of hardware, software and data.
Note that the CAN dongles and the CAN data are omitted
from the requirements column because they are employed in
all methodologies.

The table also includes the level of automation achieved by
these approaches and their degree of intrusiveness. Intrusiveness
refers to the active and voluntary alteration of the traffic
transiting on the bus. The traffic can be manipulated with
the injection of messages or with the triggering of target ECUs
by a human operator. Intrusive approaches present two main
limitations: (i) they typically require additional equipment that
must be physically attached in the vehicle, such as a diagnostic
dongle to install on the OBD-II port, and (ii) the necessity
for a human operator implies the risk that they would not be

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 19

Table III
COMPARISON OF THE TOKENIZATION ALGORITHMS

Approach Endianness
approach Physical Counter Checksum Status Constant/

Unused Complexity Evaluation
Metric

Markovitz [63] Optimization – ✓ ✓ – ✓ ✓ O(n2)
False Positive

Rate (FPR)

ACTT [22] Optimization Reverse bit
ordering ✓ ✓ ✓ – ✓ O(n logn)

CE/total n. of
PIDs triggered

READ [64] BFR – ✓ ✓ ✓ ✓ ✓ O(n) CE/TE

TANG [78] BFR Reverse bit
ordering ✓ – ✓ – – O(n2)

Anectodal
evaluation

LibreCAN [61] BFR – ✓ ✓ ✓ ✓ ✓ O(n)
CE/TE,

CE/TDBC

AutoCAN [77] Optimization – ✓ ✓ ✓ ✓ ✓ O(n)
Mean bit-error,

CE/TE,
CE/TDBC

CAN-D [21] Optimization

Conditional
probability

of non-consecutive
bits flips

✓ ✓ ✓ ✓ ✓ – Mean signal
error

CANMatch [24] BFR-based Reverse bits
within single byte ✓ ✓ ✓ ✓ ✓ O(n)

CE/TE,
CE/TDBC

Choi et al. [79] BFR-based – ✓ ✓ ✓ ✓ ✓ O(n)
Mean bit-error,

CE/TDBC

able to follow precisely the instructions, thus compromising
the quality of the collected data.

Table IV reports the total required time from data collec-
tion to translation and the evaluation metric employed. As
highlighted in the table, the most popular evaluation metrics
adopted in CAN reverse engineering are True Positive Rate
(TPR), False Positive Rate (FPR), Accuracy, Precision, Recall
and F-Measure.

The table highlights that taxonomy-based methodologies are
the only ones to achieve partial automation, while the other
approaches enable full automation of the reverse engineering
process. However, Table V, which reports all the properties
decoded by each methodology, shows that taxonomy-based
approach guarantees a more complete output compared to the
majority of other approaches.

D. Key Takeaways
In this section, we introduced related work on the automation

of CAN reverse engineering. The studies on tokenization and
translation were presented, discussed and compared separately.
The following is a list of the most important takeaways from
this section:

1) The approaches for CAN signal tokenization can be
divided into 2 categories, i) using combinatorial opti-
mization, and ii) BFR-based.

2) The approaches for CAN translation can be divided into
5 categories according to the underlying strategy adopted,
i) following the signals’ semantic taxonomy, ii) based on
frame matching, iii) using ML algorithms, iv) based on
the injection PIDs, and v) exploiting companion apps.

3) Studies on CAN reverse engineering differ significantly
from one another not only based on the followed approach,
but also according to the requirements, the granularity of
the decoded information and their intrusiveness.

4) Due to the absence of a standardized benchmark dataset
and the highly diverse data collection and testing scenarios,

a quantitative comparison of the related work seems
unfeasible at the time of writing.

V. THREATS OF CAN REVERSE ENGINEERING

CAN data have been used widely for academic research on
vehicular systems and for innovations in the automotive industry.
The progressive automation of CAN bus reverse engineering
allows researchers and aftermarket companies to easily obtain
CAN data from vehicles and develop innovative automotive
services and use-cases. However, this automation also raises
significant concerns regarding the security of vehicles, as well
as the safety and privacy of drivers and passengers. We will
henceforth discuss the main security issues and the potential
attacks on the CAN bus and the violations of the privacy
enabled by the exploitation of CAN data obtained via reverse
engineering.

We also analyze the countermeasures proposed in the
literature to prevent and detect attacks on the CAN bus, and
preserve the privacy of the driver. We contextualize these
countermeasures in the field of reverse engineering with the aim
of understanding whether they suffice to prevent the decoding
of CAN data formats as well.

A. Attack Surfaces

The surface on which CAN attacks can be conducted may
be physical or wireless.

Physical entry points are i) the OBD-II port which, as
explained in Section III, grants direct access the bus in the
absence of a gateway, ii) the USB port to an infotainment
system, iii) the bus wiring, and iv) ECUs in accessible areas
of the vehicle.

Wireless entry points are i) OBD-II dongle equipped with a
Bluetooth, WiFi or cellular interface, ii) infotainment/telematics
devices with a Bluetooth, WiFi or cellular interface. Figure 17
shows the taxonomy of these entry points.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 20

Table IV
COMPARISON OF THE TRANSLATION ALGORITHMS.

Approach Requirements Automation Intrusiveness Required
Time

Evaluation
Metric

Jaynes et al. [80] Supervised ML DBC files and CAN logs of
a number of vehicle models Full No < 1 min

TPR, FPR,
Precision,

Recall,
F-Score

Huybrechts et al. [23] Supervised ML, PIDs GPS data,
PIDs requests via OBD-II Full High < 1 min TPR,

FPR

ACTT [22] PIDs PIDs requests via OBD-II Full High 20 min Fitness score,
matching bits

LibreCAN [61] Taxonomy, PIDs

GPS and IMU data,
PIDs requests via OBD-II,
instructions for a human

operator regarding
the data collection

Partial High 40 min
Accuracy,
Precision,

Recall

Moore et al. [81] Supervised ML, PIDs PIDs requests via OBD-II Partial High – TPR, FPR

CSI [20] Supervised ML DBC files and CAN logs of
a number of vehicle models Full No < 2 min

Accuracy,
Balanced Accuracy,

F-Score,
Balanced F-Score

Ezeobi et al. [25] Unsupervised ML – Full No – FM Score
Young et al. [82] Unsupervised ML – Full No – Dendrogram
AutoCAN [77] Taxonomy GPS data Full Moderate Hours TPR

CANHunter [86] Companion apps, PIDs Mobile apps installed
on a mobile phone Full High Minutes

to hours TPR

CAN-D [21] PIDs PIDs requests via OBD-II Full High 4 min F-Score,
Precision, Recall

CANMatch [24] Frame matching,
unsupervised ML

DBC files of a large number
of vehicle models Full No 2-4 min Recall, FPR

Buscemi et al. [60] Taxonomy

GPS data,
instructions for a human

operator regarding
the data collection

Partial Moderate 5 min

Recall, Normalized
Root Mean

Squared Error
(NRMSE)

DP-Reverser [87] Companion apps, PIDs Companion apps,
cameras, a robotic arm Full High Minutes Accuracy, TPR,

Precision

Table V
PROPERTIES DECODED BY CAN REVERSE ENGINEERING METHODOLOGIES

Boundaries Endianness Signedness Semantic Meaning Format

Jaynes et al. [80] – – – At frame level –
Markovitz and Wool [63] ✓ – – – –
Huybrechts et al. [23] – – ✓ –
TANG [78] ✓ – – – –
READ [64] ✓ – – – –
ACTT [22] – – ✓ ✓
LibreCAN [61] ✓ – – ✓ ✓
Moore et al. [81] ✓ – – ✓ –
CSI [20] – – – ✓ –
Ezeobi et al. [25] – – – At frame level –
Young et al. [82] – – – At frame level –
AutoCAN [77] ✓ – ✓ ✓
CANHunter [86] ✓ – – ✓ –
CAN-D [21] ✓ ✓ ✓ ✓
CANMatch [24] ✓ ✓ – ✓ ✓

Buscemi et al. [60]
✓

(CANMatch
tokenizer)

✓ ✓ ✓ ✓

DP-Reverser [87] ✓ – – ✓ ✓

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 21

Attack entry
points

Physical Wireless

OBD-II USB to
infotainment

system

OBD-II with
wireless interface

Telematics device with
wireless
 interface

Bus wires Exposed
ECUs

Figure 17. Taxonomy of entry points for attacks on CAN.

A number of physical access attacks have been demonstrated
in related work (see Section V-C). We argue that, despite
showing the dramatic impact of a diverse set of attacks on
CAN, adversary scenarios based on physical entry points are
unrealistic or very rare. In fact, they assume that the adversary
is inside the vehicle during the attack or had prior access to
the vehicle and re-flashed the target device to produce the
attack at a specific time. In the first case, assuming that the
adversary would not care for their own safety, they could still
perform other less sophisticated and cyber-oriented hijackings.
In the second case, the adversary would not have control over
the actual driving session, thus making the success rate of the
attack unpredictable.

As discussed in Section V-C, the possibility of remotely
accessing the CAN bus opens the door for a number of
high-risk hijackings, as it facilitates real-time attacks and
diminishes the risk of being caught in suspicious activities.
Furthermore, recent advances in Vehicle-to-Everything (V2X)
communication technologies and related use-cases [10] are
expected to boost the spread of Vehicular Ad Hoc Networks
(VANETs) [90], and thus the likelihood of remote attacks.

A VANET has two types of nodes, the On-Board Units
(OBUs) and the Roadside Units (RSUs) [11]. An OBU is
a dedicated module for connected mobility with a wireless
interface installed in the vehicle. OBUs are typically connected
to the central backbone network of the vehicle (CAN, as
of today) or to the OBD-II port which, as explained in
Section III-D in most cases permits direct access to it. A
RSU is a roadside computing device providing connectivity
support for passing-by vehicles. It usually has multiple network
interfaces to connect to the vehicles, other RSUs, and Internet
Service Providers (ISPs).

In a VANET, vehicles communicate with each other and
with infrastructure, sharing traffic, comfort, and entertainment
information. As manufacturers are gradually moving to Zonal
E/E Architecture, i.e., based on dividing the in-vehicle networks
into zones interconnected by gateways, there will be new OBUs
operating alongside legacy ECUs. As a consequence, not every
vehicle function will require sensors with wireless interfaces
in the future. However, we expect the number of OBUs to
grow to address the rising needs of Internet-based services
on the market. From the security perspective, this means an
increase of the attack surface that an adversary can exploit to
gain remote access to the CAN bus. In the absence of proper
security mechanisms on the OBUs and/or between them and
CAN, e.g., a firewall, accessing these controllers would grant

the capability of injecting malicious frames in a similar fashion
as [91].

B. Adversary Model

The authors of Cho and Shin [92] define two types of
adversary:

• Weak – The attacker can suspend or stop the ECU from
broadcasting particular frames or keep it in listen-only
mode, but cannot fabricate frames.

• Strong – The attacker has complete control of the ECU
and memory data. As a result, in addition to what a weak
attacker can achieve, an attacker in control of a completely
hacked ECU can launch attacks by inserting arbitrary mes-
sages. Even when preventive security mechanisms, such
as Message Authentication Code (MAC), are incorporated
into the ECUs, a strong attacker can deactivate them
because they have complete access to any data stored in
their memory, including data necessary for implementing
shared secret keys and other security mechanisms.

C. Types of CAN Attacks

The following attacks against CAN bus have been identified
[92]:

• Replay – An attacker can override the actual value of
telemetries and other vehicle functions by continuously
replaying the same messages, thus sabotaging the correctly
functioning vehicle. Due to the absence of authentication
and security checks on the timestamp, the frames are
typically accepted by the receiver ECUs.

• Suspension – An attacker weakly compromises an ECU,
thus preventing it from sending CAN frames. Given that
often an ECU requires to receive specific CAN frames
from other ECUs to function properly, this attack might
not only suspend the target ECU, but also others waiting
for its data. In this case, the suspension attack causes
Denial of Service (DoS).

• Fabrication – A strong adversary generates and injects
frames with tampered ID, DLC and data. The purpose
of this attack is to subvert any periodic signals that are
transmitted by a legitimate safety-critical ECU in order
to make the ECUs receiving them inoperable.

• Masquerade – It is the combination of a replay/fabrication
attack and a suspension attack. To mount a masquerade
attack, the adversary needs to compromise two ECUs as a
weak and a strong attacker, respectively. The objective of

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 22

ECU A ECU B ECU C
ECUs attached

to the Bus

Frames from

each ECU
FA

TattackT0

FB FC

FA FB FC

Start of attack

FA FB FC FA FC
Frames

sent on the Bus

TattackT0

FA FB FC

Start of attack

FA FB FC FA FC
Frames

sent on the Bus

TattackT0

FA FB FC

Start of attack

FA FB FC FA FC
Frames

sent on the Bus

Suspension

Attack on

ECU B

Time

Time

Fabrication

Attack on

ECU B

Masquerade

Attack on ECU

A (suspension)

and ECU B

(fabrication)

FA

FA

CAN Bus

Configuration

Time

Figure 18. Examples of CAN Bus with 3 ECU attached – A, B, C – sending
frames FA, FB and FC , respectively. The figure illustrates the impact of
suspension, fabrication and masquerade attacks on this network. The suspension
attack is launched against ECU B. After the attack has started (at time Tattack),
the frames from ECU B are suspended from transiting on the bus. The
fabrication attack is performed on ECU B to fabricate frames similar to those
sent by ECU A. After the attack has started, on the network transit the FA

frames sent legitimately by ECU A and those fabricated by ECU B. The
masquerade attack is conducted on ECU A, which is suspended, and ECU B,
which fabricates FA frames. After the attack has started, only fabricated FA

frames sent by ECU B transit on the bus.

this attack is to manipulate an ECU, while shielding the
fact that an ECU is compromised. The adversary has to
learn first which messages and at which frequency are sent
by its weakly compromised ECU. Then, the adversary
suspends/stops the transmission of its weak attacker and
utilizes its strongly compromised ECU to inject tampered
frames at the right frequency.

• Flooding – In this attack, the adversary continuously sends
a large number of replayed or fabricated high priority CAN
packets (i.e., with low ID), thus causing DoS.

Figure 18 shows examples of suspension, fabrication and
masquerade attacks.

Masquerade attacks have higher success rates than the replay
and fabrication attacks [91], [93]. According to our own hacking
experience on a Renault Twizy, fabricated and replayed frames
typically concur with the frames sent by the original ECU,
thus making the attack unstable. The purpose of our attack
experiment was to trick the electric vehicle’s dashboard (and,
therefore, the driver) into believing that it had a full Status of
Charge (SoC) when, in reality, it only had a partial charge.

First, we decoded the SoC signals through reverse engineer-
ing. Then, by using a ECOM Green CAN logger attached to the
OBD-II port and the CANCapture software, we continuously
sent frames with tampered SoC at a rate 10 times higher
than the original frames. The attack was partially successful:
most of the time the SoC and the driving range appeared full
(see Figure 19), but the dashboard would occasionally display
the real SoC (see Figure 20) or the real driving range (see
Figure 21).

Furthermore, as demonstrated by Miller and Valasek [91],
some ECU may be programmed to unmount in the case they
receive frames at a higher rate than expected. This causes DoS,

Figure 19. Successful instance of the fabrication attack: the dashboard displays
a full SoC and the maximum driving range (47 km)

Figure 20. Unsuccessful instance of the fabrication attack: the dashboard
displays maximum driving range (47 km), but the original SoC

but can prevent the more dramatic consequences of an attack
targeting critical vehicle functions.

Note that replay and flooding attacks can be conducted
without prior knowledge of the semantic of the frames payloads
sent by the target ECU. By contrast, if one or more specific
vehicle functions are the target of a suspension, fabrication or
masquerade attack, a precise understanding of the CAN signals
sent by the target ECUs is required. In such a case, an accurate
reverse engineering of the frames associated with the target
ECUs must be conducted prior to the attack.

Given the critical role that reverse engineering has for these
high risk attacks, it is evident that the automation of this
process might not only increase the likelihood of them being
carried out successfully, but also be an incentive for attackers
to achieve them. Furthermore, as detailed in Section V-E, the
advent of VANETs poses additional security threats related to
automated reverse engineering.

Figure 21. Unsuccessful instance of the fabrication attack:the dashboard
displays a full SoC, but the original remaining driving range (5 km).

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 23

D. Related Work on CAN Attacks

An alarming number of physical and remote attacks against
in-vehicle networks posing a threat for the safety of vehicles
and passengers have been shown to be successful. Described
below are the main attacks against the CAN bus of real vehicles.

In 2010, Koscher et al. [94] conducted fabrication attacks
targeting a variety of car components, namely the instrument
cluster, Body Control Module (BCM), Electronic Brake Control
Module (EBCM), and Engine Control Module (ECM). With
the help of IdaPro [52], a number of CAN signals were initially
manually reverse engineered to acquire background information
related to the target vehicles’ functionalities. Through the
OBD-II port, they conducted attacks on real moving vehicles.
In the attacks targeting the instrument cluster, they observed
an alteration of the fuel level and the speedometer readings.
Furthermore, they managed to manipulate the parameters of the
engine or disable it. Following a continuous fuzzing method,
they also prevented the activation or the release of the brakes.

In 2013, Miller and Valasek [93] conducted a series of
attacks on a Ford Escape and a Toyota Prius to compromise the
operation of a number of sensors. The authors, after completing
a laborious process of manual reverse engineering, were able
to interpret signals that are associated with a wide range
of functions in both vehicles, particularly the speedometer,
the odometer, and the steering. Subsequently, they started the
process of replacing the frames that were being sent by the
authentic ECUs by adopting replay and fabrications attacks.
Interestingly, they observed that the steering signals that were
being transmitted by the Parking Assist Module (PAM) could
not be spoofed to values that were too drastically different from
the original value. Rather, for the attack to be successful, the
changes had to take place gradually. In addition, the authors
were successful in partially denying the service of the steering
wheel by saturating the bus with higher-priority signals. As a
result, the steering wheel would only turn to a maximum of
45°.

In a subsequent work, Miller and Valasek [91] drove a Jeep
Cherokee off the road after gaining control of its infotainment
system remotely and injecting messages in the CAN bus.
Unlike their previous work [93], the authors were unable to
operate the Jeep Cherokee’s brakes via the Anti-lock Braking
System (ABS), which was the attack vector for engaging brakes,
through a fabrication attack. In fact, the system was capable of
recognizing the attack and turned off preventively. In response
to this, they designed a masquerade attack capable of bypassing
the ABS’s security mechanism.

In a concurrent work, Jafarnejad et al. [95] used a masquer-
ade attack to take remote control of an electric vehicle, the
Renault Twizy. The authors initially hacked into the Sevcon
Gen4 of the vehicle – the main motor ECU – using a brute-
force approach. Then, following a manual reverse engineering
approach, they identified the signals related to the throttle pedal,
the gear (forward/back) and the brake pedal. Using an Android
app connected to an OVMS tool attached to the OBD-II port,
they were finally able to remotely drive the vehicle.

Woo et al. [96] conducted replay and fabrication attacks
related to a wide range of functionalities in a target vehicle,

including the engine state, acceleration, speedometer, voice
notification, and dash board readings. This was accomplished
by decoding the content of frames associated with 7 CAN
IDs through manual reverse engineering. Similarly to [95],
the attack was conducted remotely by using a mobile app
communicating with a module attached to the OBD-II port.

In 2017, Palanca et al. [97] proposed a type of suspension
attack, called bus-off attack, which exploits CAN’s error
confinement policies. In this attack, a malicious node is
synchronized to the period of the frames with the targeted ID
and overrides recessive bits with dominant bits, thus causing
an error frame. After a certain amount of errors, the original
transmitter ECU enters the bus-off state and ceases to function.
The authors demonstrated this attack against the parking sensors
of a Romeo Giulietta.

Iehira et al. [98] conducted a masquerade attack on the
engine of a hybrid vehicle. In order to successfully substitute
the frames of the target ECU, the authors generated three
different types of bus-off suspension attacks, i) bit-error based
(the same employed by Palanca et al. [97]), ii) stuff-error based,
and iii) one-frame based.

Table VI summarizes and compares the presented attacks
based on their type, the entry point, the adversary model, the
testbed employed and their impact on the network.

Note that a number of other relevant attacks targeting ECUs,
wireless keys and telematics mobile apps have been performed
against vehicles [99]–[104]. These studies demonstrate the
ease with which an adversary can access the vehicle’s internal
network, specifically the CAN bus. Other related work classifies
and discusses security threats on the CAN bus under a
theoretical perspective, i.e., without launching attacks on real
vehicles [105]–[108].

However, given that the focus of this survey is reverse
engineering, we opted to highlight the attacks on real vehicles
that demonstrate the risks directly associated with the exposure
of CAN data formats.

E. Security Issues
In the famous Jeep Cherokee attack [91] described above,

no work on the automation of CAN reverse engineering has
yet been presented. As a consequence, the authors spent
several months to achieve a precise understanding of the CAN
encoding, which is necessary to carry out the attack exactly as it
is designed. Additionally, such an attack requires the adversary
to have constant access to a vehicle of the same model as the
target vehicle during the whole reverse engineering process.
Despite the fact that this attack caused initially public stir [109],
the difficulty and time required for its preparation made the
interest of OEMs towards CAN security quickly fade away.
As a result, contemporary vehicles are not yet equipped with
a secure version of the CAN bus.

The automation of CAN bus reverse engineering, however,
is a game changer with respect to the preparation of vehicular
attacks. The easing of this process will likely encourage
potential adversaries to design a number of new attacks.
Similarly, reducing the data collection time implies that the
attacker only needs access to a vehicle of the same model as
the target vehicle for only a short time span.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 24

Table VI
COMPARISON OF WORKS ON CAN ATTACKS.

Work Entry point Adversary model Type of Attack Testbed Impact

Koscher et al. [94] Physical access to the
OBD-II port

Strong attacker Fabrication Real vehicle driven at
speed

Manipulation of the
fuel level and the
speedometer readings,
disabling of the en-
gine and the brakes

Miller and Valasek
[93]

Physical access to the
OBD-II port

Strong attacker Replay and Fabrica-
tion

Real vehicle driven at
speed

A variety of hijack-
ings to the dashboard,
steering wheel and
other vehicle func-
tions

Woo et al. [96] Remote access to the
OBD-II port

Strong attacker Replay and Fabrica-
tion

Software-hardware
simulation testbed

Manipulation of the
dashboard, the acceler-
ation and the steering
wheel, suspension of
the engine

Miller and Valasek
[91]

Infotainment system Strong attacker Masquerade Real vehicle driven at
speed

The adversary drives
the target vehicle from
remote

Jafarnejad et al. [95] Remote access to the
OBD-II port

Strong attacker Masquerade Real vehicle driven at
speed

The adversary drives
the target vehicle from
remote

Palanca et al. [97] Physical access to the
OBD-II port

Weak attacker Fabrication of target
bits

Parked real vehicle The target ECU enters
bus-off state

Iehira et al. [98] Unknown Strong attacker Masquerade Real vehicle The tachometer dis-
plays the wrong RPM

This scenario appears even worse if we factor in the current
massive reuse of the same ECUs across different vehicle brands
and models. As highlighted in [24], such a practice seems
motivated by economies of scale. Assuming that in the near
future the OEMs, following a similar business logic, would
equip multitudes of vehicle models with the same OBUs, an
attacker would need to compromise just few of them to gain
remote access to the internal data of a high percentage of
vehicles on the road.

By adopting fully automated reverse engineering techniques,
adversaries could also reverse engineer the CAN bus of
unknown vehicle models without physical access to them. In
such a scenario, they can potentially reverse engineer multiple
vehicles and then inject pre-designed vehicle-agnostic attacks
in all of them in a single event.

The work in [110] focuses on the impact that the reuse
of CAN frames – a common practice among the OEMs
according to [24] (see Section IV-B) – has on this attack
scenario. The possibility to undertake fully-automated remote
reverse engineering in a few seconds without requiring any
specific activity from the (unaware) driver enables favorable
scenarios for large-scale attacks, e.g., a road intersection, a
traffic light stop, or a parking lot. The authors demonstrate
that simply anonymizing the frames, i.e., changing the IDs,
is insufficient to prevent this type of reverse engineering,
given they can be successfully deanonymized through ML
classification. A subsequent work [111] attempts to counteract
this deanonymization through traffic mutation techniques,
such as padding and morphing. The results show that the
deanonymization accuracy can be halved, but at the expenses
of a consistent traffic overhead.

Figure 22 illustrates an attack scenario in which an adversary
reverse engineers and injects tampered messages fully and

 1. Log CAN data

2. Reverse
engineering

3. In
ject attack

3.
3. Inject attack

1. Log CA
N

 data

Figure 22. Remote attacking scenario: a compromised RSU is exploited to
log CAN data from two vehicles nearby, reverse engineer the data, and inject
a pre-designed vehicle-agnostic attack.

remotely through a compromised RSU in communication with
vehicles on the road.

F. Privacy Issues

The translation of the CAN data format does not only help
adversaries mount the attacks discussed in Section V-C, but
also exposes the privacy of the drivers. It has been shown
that the signals transiting on the CAN bus can be effectively
employed for driver fingerprinting [112]–[121]. Fingerprinting
is the identification of single drivers among a pool of individuals
based on their driving style.

Driver fingerprinting can be used as a tool for a number
of services, including fleet monitoring, usage-based insurance,
comfort features, anti-theft mechanisms, etc. However, when
exploited by government authorities, insurance companies, or
unknown adversaries, the driver fingerprinting enabled by the
reverse engineering of CAN can have dramatic implications

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 25

for the person behind the wheel. This is especially true if we
consider the VANET scenarios presented in Section V-A.

If it is reasonable to presume that security threats originate
from people or groups with limited capabilities, the identifica-
tion of drivers and the breach of their privacy on a large scale
may be of interest to government agencies in totalitarian nations.
Being in control of the road infrastructure, governments would
have a privileged remote access to the vehicles all over the
country. With the enhanced capabilities of reading clear CAN
data offered by automated reverse engineering, they would be
able to monitor the activities of the drivers.

In driver fingerprinting, a number of features representative
of the driver’s behavior are extracted from the CAN signals
and external GPS/IMU. Examples of features extracted from
CAN signals employed in a number of studies are the frontal
acceleration, which is associated with the overall aggressiveness
of the driver, and the speed, which is associated with the
risk tolerance of the driver [113], [117], [119]. Typically, a
supervised ML model is then trained to recognize a driver or
a group of drivers based on these features.

Table VII summarizes the main related work using CAN data
for driver fingerprinting. The table lists the information that is
gathered from the CAN signals and from external sensors, the
classification model that was used, and the results that were
attained in relation to the number of drivers involved in the
tests.

As shown in Table VII, the fingerprinting datasets are
extremely diverse in terms of signals, number of drivers, and
overall size. Consequently, a comparative examination of the
related work is quite challenging.

In particular, the accuracy of the presented fingerprinting
approaches when considering drivers at large-scale should be
thoroughly investigated. Indeed, as discussed in the related work
and widely demonstrated in other domains, the computational
performance of ML models can consistently degrade as the
number of labels increases (in the case of driver fingerprinting,
the number of unique drivers) [123]. Maintaining multiple
models, each trained on a restricted group of users based on
geographical location and other characteristics, could be a
solution for this limitation in the case of pool of drivers in
the order of thousands. On the contrary, scalability is a major
issue from the perspective of adversaries such as authoritarian
governments interested in nationwide monitoring.

Data collection is another challenge associated with driver
fingerprinting [37]. In fact, the entity interested in recognizing
the driver at any given time should have data related to one or
more of the target individual’s driving sessions. A mandatory
preliminary driving test can easily achieve this in the case of car
fleet management, car rental, or insurance companies. Instead,
from an adversary standpoint, data collection is a significant
challenge, particularly when considering remote scenarios.

G. Other Threats

Other than the violation of vehicle security and the drivers’
privacy, there are two other types of fraudulent activities
that involve reverse engineering on CAN, tuning and theft
of intellectual property.

Tuning refers to the cases in which the attacker is also
the owner of the target vehicle, whose objective is to make
unauthorized changes to the code or data contained in one
or more ECUs. For instance, the vehicle’s owner might be
interested in tuning the engine settings to increase its power,
reducing the mileage on his car to increase its resale value,
or installing unauthorized applications [124]. Additionally, the
owner can attempt to circumvent a specific authentication
procedure in order to install inexpensive aftermarket ECUs
instead of the more expensive, manufacturer-approved ones.

In this scenario, the reverse engineering of the CAN data
provides the user with insights into the functioning of the target
ECUs that are useful for implementing the needed software
modifications. In particular, automated reverse engineering
seems appealing to this class of adversaries as it allows
them to obtain the desired information requiring minimal
knowledge of CAN and human effort. Other than breaching
the sale contract with the vendor, such unauthorized operations
(typically conducted by non-expert users) can result in serious
safety concerns for the vehicle’s passengers [125].

If an innovation is not protected by a patent, reverse
engineering is often recognized as a legitimate way to gain
access to a trade secret under the legislation of the majority of
countries [126]. Thus, the reverse engineering of CAN data can
also be legitimately leveraged by OEMs in order to divulge
trade secrets related to the operation of ECUs belonging to
competitors.

H. Countermeasures

Numerous solutions have been proposed to secure the CAN
bus. A first straightforward approach is network segmentation
[127]. Its goal is to limit the damage caused by attacks by
splitting the CAN bus into distinct sub-networks. If a sub-
network is compromised, the attack is contained therein and
does not propagate to the rest of the network. A gateway
handles the communication between sub-networks. This method
is currently applied in a number of commercial vehicles, but
it presents some evident limitations. Namely, if the gateway is
compromised, the attack can be extended to the whole network.
Moreover, this solution can increase the maintenance cost of
the bus [128].

1) Cryptographic algorithms: A theoretically more robust
way to ensure data confidentiality and ECU authentication is
the use of cryptographic mechanisms for encryption. Although
cryptography has been used extensively in traditional computer
communication networks, its acceptance in the automotive
sector is hampered by three significant problems:

• Latency – In order to assure the vehicle’s and the
passengers’ safety, some safety-critical control data are
subject to stringent latency constraints. The maximum end-
to-end delay allowed for cyclic control data transferred
on the CAN bus can range from few ms to 1 s [16]. Since
strong encryption techniques add a non-negligible delay
and might prevent the delivery of signals until they are
fully encrypted, their deadlines can be missed.

• Bus Load – To safeguard data integrity, authentication
codes, such as MACs, must be attached to the data.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 26

Table VII
COMPARISON OF WORKS ON CAN FINGERPRINTING.

Work CAN Signals Extra-CAN data Model Dataset Accuracy

Öztürk and Erzin
[112]

Gas, brake pedal
Gaussian Mixture
Model (GMM)

Uyanik [122], 23
drivers

85.2 % for 3 drivers

Zhang et al. [113] Acceleration, gas
pedal, RPM

GPS via smartphone
Support Vector Ma-
chine (SVM)

Own dataset, 14
drivers

79.9 % for 14 drivers

Martinez et al. [114] 12 features based on
CAN

6 features based on
IMU sensors Extreme Learning Ma-

chine (ELM)

Uyanik, 23 drivers 97 % for 3 drivers,
84.4 % for 11 drivers

Hallac et al. [115] Steering, RPM, gas
pedal, brake pedal,
throttle pedal

Longitudinal and lati-
tudinal acceleration Random Forest (RF)

Audi AG and Audi
Electronics, 64 drivers

50.1 % for 5 drivers,
76.9 % for 2 drivers

Enev et al. [116] Powertrain signals,
brake pedal,
acceleration, steering

RF UCSD, 15 drivers 100 % for 15 drivers

Kwak et al. [117] Brake pedal, accelera-
tion, steering

RF OCSLAB, 10 drivers 99.5 % for 10 drivers

Wang et al. [118] RPM, gas pedal,
steering wheel, long.
and lat. acceleration,
speed

RF Own dataset, 30
drivers

100 % on 30 drivers

Jeong et al. [119] Acceleration, brake
pedal, steering, speed,
throttle pedal, RPM

long. and lat. acceler-
ation

CNN, LSTM Own dataset, 4 drivers 90 % for 4 drivers

Ezzini et al. [120] Car state and dynam-
ics, Electroencephalo-
gram (EEG)

GPS via EEG and
smartphone

RF OCSLAB (10 drivers),
HCI-Lab (10 drivers),
UAH (6 drivers)

90 % for OCSLAB,
100 % for HCI-Lab,
76 % for UAH

Lestyan et al. [121] Gas pedal, brake
pedal, speed, RPM

RF Own dataset, 33
drivers

77 % for 5 drivers

However, due to the limited length of standard CAN
frame payloads, these codes are likely to be sent in
separate frames, thus raising the bus load. A high bus
load can cause some CAN frames to miss their stringent
deadlines, thus compromising safety. So, the bus load is
recommended not to exceed 80 %.

• Costs for the OEMs – ECUs are resource-constrained
for cost reasons. Since the majority of safety-critical
activities need simple computations and do not require
high-performance hardware, the ECUs are well optimized
for repetitive control operations. Typically, ECUs have a
clock frequency of less than 100 MHz and a RAM capacity
of about 1 MByte. Using cryptographic techniques for
encryption would necessitate more powerful hardware,
driving up the cost for OEMs. In addition to unit costs,
introducing security protocols to legacy ECUs that have
been used in vehicles for years without appropriate
software updates would raise development costs [40].

A number of cryptographic algorithms to ensure the confiden-
tiality of the CAN traffic have been proposed at software and
hardware level, such as Advanced Encryption Standard (AES)-
128/256 [129], [130] and Triple Data Encryption Standard
(DES) [131]. However, these algorithms incur unacceptable
overload or latency, require modifications to the ECU hardware
and/or are not backward-compatible. Furthermore, in these stud-
ies replay attacks have not been considered. Replay attacks can
be effectively mitigated by simply adding a timestamp/counter
in the payload prior to the encryption (at the expense of bus
load), as discussed hereinafter.

To support authenticity, a multitude of approaches have

been proposed to enable ECUs to verify the source of the
frames [132]–[137]. In addition, AUTOSAR built a module,
Secure Onboard Communication (SecOC), based on ECU
authentication to prevent tampering and spoofing [138]. The
majority of these algorithms also guarantee a defense against
replay attacks through timestamp or counter-based freshness
management. However, these algorithms do not provide confi-
dentiality and/or a suitable level of security. In addition, they
often cause excessive delay or traffic load [139].

To fix the shortcomings of the aforementioned works with
respect to bus load and latency, some lightweight cryptographic
solutions for data confidentiality and ECU authentication have
been proposed [140], [141]. Lightweight cryptography is a
kind of cryptography targeted for devices with little computing
resources. Following the effort started in 2018 by the National
Institute of Standards and Technology (NIST) to meet the
requirements of the rising Internet-of-Things (IoT) applications,
lightweight cryptography aims at reducing the usage of memory,
processing power, and energy.

Halabi and Artail [140] presented a lightweight protocol for
securing the CAN bus inspired by the Blockchain technology
[142]. Their technique ensures authenticity, freshness, and
confidentiality via the combination of encryption and key
creation using hash chains. The protocol was evaluated on
a physical testbed and proved effective against replay and
spoofing attacks. Given that CAN is susceptible to errors and
that frame retransmission impacts latency, it is unclear how
packet loss can be dealt with immutable hash chains.

In 2019, Lu et al. [141] proposed Lightweight Encryption
and Authentication Protocol (LEAP), a cryptographic protocol

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 27

based on Rivest Cipher 4 (RC4), a lightweight stream cypher.
To deal with the low security offered by RC4 alone, the authors
implemented a process for key update and distribution based
on AES and Secure Hash Algorithm (SHA). After the key
update and distribution phase pairs of ECUs have a symmetric
session key to lead an encryption and authentication process
based on RC4. Other than traffic overload, the initialization
and distribution of keys among pairs of ECUs might introduce
the difficulty to scale.

Following a different approach, Pesé et al. [139] proposed
Sufficiently Secure CAN (S2-CAN), a software-based solution
composed of two main phases that alternate iteratively (i)
the handshake – during which a number of parameters are
securely shared between the ECUs, and (ii) the operation
phase – during which the ECUs send lightly encrypted and
authenticated frames that are decoded by the receiver ECUs
based on the parameters shared during the handshake. The
main novelty of this approach is the circular shift of the bytes
in the payload, i.e., the dynamic relocation of data content
across the payload.

S2-CAN guarantees confidentiality, authenticity, and fresh-
ness, while ensuring high security, low latency, and low
communication overload (it is introduced in the handshake
phase only). S2-CAN also consistently hinders tokenization
due to the dynamic changes in the position of the signals
within the payload. However, three major aspects have to be
addressed: (i) key management – the authors do not provide
any clear indication on how the keys needed for the handshake
should be securely embedded in the ECUs, (ii) endianness – it
is not clear how little-endian data should be interpreted given
the dynamic circular shifting of the bytes, and (iii) the payload
length – 2 unused bytes, i.e., not containing signals, should
always be present in the payload, as the freshness parameters
are allocated in them. Table VIII summarizes the main related
work on CAN attacks prevention.

2) Intrusion Detection Systems: While the goal of encryption
is to prevent attacks, intrusion detection serves as a reactive
security mechanism. Similarly to other systems, a combination
of prevention mechanisms and intrusion detection has been
suggested for CAN. In particular, due to the aforementioned
constraints of cryptography with respect to CAN, intrusion
detection seems to be approach mostly investigated in the
literature.

Two categories of IDS can be identified: signature-based
and anomaly-based. Signature-based systems establish a tax-
onomy of known attacks and scan the CAN traffic to find
a match with any of them. Anomaly-based systems, instead,
observe the ECUs and CAN traffic in search of behaviors
that deviate from the usual nature of the network. The
methodologies for anomaly-based IDS can be grouped as
(i) physical characteristics-based [92], [144], (ii) sending
frequency-based [145]–[147], (iii) feature-based [148], [149], or
(iv) specification-based [150], [151]. Anomaly-based IDSs gen-
erally achieve lower detection performance than the signature-
based ones but are capable of detecting previously unknown
attacks.

IDSs are popular because they do not typically require
substantial changes to the CAN protocol and add low or

no overhead to the communication stream. While they have
shown to be an efficient countermeasure against attacks on the
CAN bus, they cannot prevent reverse engineering. In fact, the
assumption of IDS is that adversaries have an active role in the
attack, i.e., they actively inject tampered information into CAN.
Similarly, authentication systems are not sufficient to prevent
adversaries from sniffing the CAN traffic. On the contrary, the
logging of data to perform automated reverse engineering is a
passive task that does not alter the regular traffic. Hence, IDSs
cannot detect suspicious activities.

In principle, it would be possible to adapt IDS to recognize
the abnormal request of PIDs, as it implies an alteration of
the traffic. However, diagnostics requests are a useful tool
employed by car electricians in their daily job. We argue that
it is unlikely that a tool would manage to distinguish between
the usage of PIDs for diagnostic purposes and for reverse
engineering, since the type and timing of the requests is highly
arbitrary. Moreover, since most PIDs address emissions-related
parameters, their usage could become limited with the advent
of EVs.

In conclusion, more work is needed to identify solutions
compliant with the constraints of CAN bus and the business
logic of the OEMs.

I. Key Takeaways

In this section, we introduced and structured related work
on the threats against CAN. In particular, we assessed the
impact that the exposure of CAN data format as a consequence
of reverse engineering has on the security of the vehicles
and the safety and privacy of drivers and passengers. The
countermeasures proposed in the literature were discussed as
well, with the intent of understanding whether they are sufficient
to prevent attacks on CAN and further anonymize the data
transiting on the bus.

The following is a list of the most important takeaways from
this section:

1) Many physical and remote attacks against CAN have been
demonstrated in the literature, targeting the availability
and the proper operation of a variety of vehicle functions.

2) The insights on the data format provided by the reverse
engineering is essential to launch suspension, fabrication
and masquerade attacks. The latter type of attacks, in
particular, allows an adversary to take full control of the
vehicle.

3) The full automation of the reverse engineering process
substantially eases the work of potential adversaries in
VANETs, thus increasing the likelihood of attacks against
the network. It also potentially paves the way to large-scale
attacks.

4) Related work demonstrates that drivers can be identified
based on the telemetries contained in CAN signals. Hence,
exposing CAN signals formats through automated reverse
engineering can leak information of a large number of
drivers.

5) The CAN data formats obtained through reverse engineer-
ing can be exploited by hobbyists for the tuning of their
vehicles, thus exposing them to safety risks.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 28

Table VIII
SUMMARY OF COUNTERMEASURES AGAINST SECURITY AND PRIVACY THREATS.

Work Protection Issues Impact on reverse engineering

CANAuth [132] Authenticity, freshness No confidentiality No protection
CaCAN [133] Authenticity, freshness High bus overload, low security

level, no confidentiality
No protection

VeCure [134] Authenticity, freshness 2 bytes reserved in the payload, no
confidentiality

No protection

IA-CAN [135] Authenticity, freshness High Latency, low security level No protection
LeiA[143] Authenticity, freshness High bus overload No protection
VatiCAN [136] Authenticity, freshness Medium-high bus overload,

medium-high latency, no
confidentiality

No protection

VulCAN [137] Authenticity, freshness Medium-high bus overload, no con-
fidentiality

No protection

Halabi and Artail [140] Confidentiality, authenticity, fresh-
ness

Low resistance to packet loss Full protection

Lu et al. [141] Confidentiality, authenticity, fresh-
ness

Medium bus overload, low scalabil-
ity (?)

Full protection

S2-CAN [139] Confidentiality, authenticity, fresh-
ness

Lack of key management, unclear
support for little endianness, 2 bytes
reserved in the payload

High level of protection

6) CAN reverse engineering can be used by OEMs to
discover the design secrets of the competitors related
to a variety of vehicle components.

7) The countermeasures proposed so far do not seem to meet
the constraints of CAN and/or the needs of the OEMs.

VI. FUTURE WORK

We discuss the possible future directions that the research
on CAN reverse engineering could follow to improve the
performance and optimize the procedures, based on our
evaluation of the techniques proposed in the literature thus far.

A. Improving CAN Reverse Engineering

We have analyzed the state-of-the-art techniques for semi-
and fully-automated reverse engineering proposed in the litera-
ture. As discussed in Section IV, the presented methodologies
largely vary in terms of performance, number of properties of
the signals decoded, requirements, as well as computational
complexity and time needed for data collection. In what follows,
we suggest three possible areas of improvement that should
be investigated further.

1) Generalization: Work on CAN reverse engineering has
produced promising results in real-world scenarios. As for
tokenization, recall and precision higher than 80 % were
achieved by multiple algorithms on different vehicles [21], [24],
[61], [79]. A high precision was also achieved when translating
the semantics and/or the format of signals [21], [24], [61].
However, the performance consistently varies with vehicles.
CAN reverse engineering should be reliable and consistent
when considering any vehicle model.

Furthermore, little has been done on EVs, and none on
motorbikes, hydrogen-propelled vehicles, and autonomous cars.
The types of ECUs embedded in these vehicle categories
can differ substantially from the ones in classic vehicles, i.e.,
manual gas-propelled cars. As a consequence, supervised ML
and taxonomy-based approaches need to be adapted to account
for this diversity. Moreover, since PIDs were developed with

the intent of monitoring emissions in oil and diesel vehicles,
their usage is limited on EVs and hydrogen vehicles.

A comparative analysis should also be conducted to un-
derstand how the performance varies with the number of
ECUs attached to the bus. Intuitively, fewer types of frames
transmitted on the bus correspond to a lower number of
ECUs, thus reducing the complexity of data to be analyzed
and the translation mislabeling. Given that motorbikes have
typically fewer ECUs than cars and trucks [152], we can
expect more accurate reverse engineering for them. On the
other hand, the reverse engineering would likely be more
difficult on autonomous vehicles due to the higher number of
ECUs [153], which are necessary to handle the complexity of
autonomous driving. Moreover, the validation should be done
while accounting for the market segment of the vehicle. In fact,
high-end vehicles transmit a greater variety of CAN frames
than low-end ones, due to more installed ECUs [154]. Further
research is needed to extend the findings from classic cars
to EVs, motorbikes, hydrogen vehicles, and autonomous cars,
while taking into account their market segment.

2) Combination of multiple approaches: To improve the
automation, robustness and performance of reverse engineering,
we recommend a combination of the approaches discussed
thus far. PIDs could be used to preliminarily decode all
vehicle functions for which ground truth is publicly available.
A taxonomy-based approach could be employed to reverse
engineer signals missed in the first step. Finally, unsupervised
and/or supervised ML problems could identify the signals
sharing redundant information with those already decoded.
Using this combined approach, a diverse dataset of DBC files
could be generated. Frame matching could be employed on new
target vehicles to efficiently reverse engineer frames already
known. The previously-used techniques could still be employed
to augment the DBC dataset, and thus improve the performance
of frame matching, as illustrated in Figure 23.

3) Modularity: Every year, new ECUs are introduced on the
market to offer the latest features and services in vehicles, rang-

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 29

Frame matching

PIDs based reverse
engineering

Taxonomy based
reverse engineering

Decode redundant
signals with ML

Add output

Dataset of DBC files

CAN log

Figure 23. Proposed pipeline for combined reverse engineering.

ing from infotainment to connectivity. These ECUs send frames
containing novel signals carrying new information semantically
different from what has been previously encountered. Reverse
engineering tools should be designed following a modular
architecture to allow the continuous release and integration of
updated software to address these new frames. As an example,
in supervised ML-based tools the models should address open
set recognition [155], i.e., being capable of discarding samples
from unknown classes, or being iteratively re-trained/updated to
include new classes of signals. In case of the taxonomy-based
approach, this upgrade would involve not solely the software,
but also the integration of additional steps in the data-collection
pipeline.

4) Remote reverse engineering: Until recently, CAN reverse
engineering has been performed by having physical access to
the vehicle. While most of the work analyzed in this paper
allows decoding the CAN traffic completely remotely once
the log has been extracted, data collection has always been
performed with the presence of an aware human operator inside
the vehicle. Today, there are several dongles that allow remote
collection of CAN data [156]. These dongles usually connect to
the OBD-II port and send the data through a wireless interface
to the cloud for processing and storage.

We argue that collecting CAN data remotely can improve the
performance of reverse engineering, since it allows collection
of traces in a variety of driving scenarios over time. This is
especially true for taxonomy-based methodologies that would
potentially not require anymore a proactive and aware user, as
mentioned in Section IV-B. Instead of having a human operator
wittingly performing the actions needed to collect the data, it
would be possible to identify scenarios where the same actions
are carried out by logging the sessions of an unaware driver
over a long period.

A context-aware model, i.e., a representation of typical
driving scenarios, could help isolate subsets of signals and
trigger the related function for their reverse engineering. Follow-
ing the suggestion of combining multiple reverse engineering
approaches, this context-aware model could be a supervised
ML model. For example, it would be possible to isolate and

decode the signals related to the wipers by comparing logs
collected in sunny days with others in rainy days with the help
of weather data.

B. Performance Evaluation of CAN Reverse Engineering
As mentioned in Section IV-C, the approaches that have

been presented in Section IV are extremely varied in terms of
the equipment requirements, testbeds, and evaluation metrics.
Furthermore the majority of discussed works were developed
in conjunction with industrial partners and are, thus, subject
to non-disclosure agreements, which prevented the release
of open source code and datasets. While the pseudocode of
tokenization algorithms is sufficient to compare them against
each other (as discussed in Section IV-A and Section IV-C),
these aforementioned aspects largely contribute to the difficulty
of reproducing experiments on CAN signals translation, thus
hindering a fair comparative evaluation.

Unlike other research domains, at the time of this writing,
there is a lack of publicly available datasets that serve as
a widely accepted baselines against which evaluating CAN
reverse engineering tools.

Comma AI were the first to release an extensive dataset
of DBC files. While the collection of DBC files contained in
Comma AI’s open repository OpenDBC [76] is remarkable
(50+ vehicle models are included in the dataset), the files
present inconsistencies in the format (some traces are even
in different languages). Furthermore, since no CAN trace is
present in the dataset, it is up to the researcher to collect the
data from the vehicle model related to the DBC file of interest.

Zago et al. [157] released a dataset of several hours of
CAN traces related to 5 vehicle models suitable for reverse
engineering. Nonetheless, no ground truth is associated to the
traces, since the repository does not contain any DBC file.
Unfortunately, OpenDBC does not contain any DBC related to
the vehicle models present in this dataset. As a consequence,
so far it is not possible to use these two datasets jointly.

For the aforementioned reasons, we urge the scientific
community to cooperate for the open sourcing of an extensive
and standardized dataset to allow a fair comparison of CAN
reverse engineering methodologies.

The ideal dataset for the benchmarking of CAN reverse
engineering should have the following characteristics:

• It should contain CAN traces collected from a real vehicle
in a real driving scenario.

• It should contain CAN traces related to driving sessions
in which a defined set of PID requests were made to the
vehicle.

• Detailed information on the vehicle, such as model and
year of production, should be provided.

• Information regarding the hardware and software em-
ployed to log CAN data from the vehicle should be given.

• Complementary GPS and IMU data related to the test
driving session, as well as relevant information regarding
the environmental, traffic and road conditions, should be
provided. The aim of this data is to offer a complete
overview of the driving session. Furthermore, this data
is sometimes required for the functioning of the reverse
engineering tools themselves, as presented in Section IV.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 30

• A DBC file should be associated to each CAN trace, to
serve as ground truth. While it is unrealistic to demand
that all the DBC files should be complete (i.e. to contain a
complete mapping of the CAN traffic), ground information
regarding a core set of vehicle functions should be
always provided. The composition of this core set of
reference should be defined beforehand by the open source
community. Finally, the format of the DBC files should
be standardized.

While the described dataset would not be sufficient to test
all CAN reverse engineering approaches, e.g. companion apps-
based tools still require additional hardware, it would cover the
majority of current methodologies. Furthermore, the availability
of such a dataset would consistently lower the entry barrier
in the topic for newcomers. As of today, in fact, a researcher
willing to work on CAN reverse engineering would need to i)
physically access multiple vehicles, ii) have a CAN logging
tool, iii) use other hardware for the collection of GPS/IMU
data, iv) have access to DBC files of the target vehicles.

With a large, public, and standardized dataset, it would be
finally feasible to explore a number of additional aspects, such
as comparison of performance variation across different models,
brands and market segments.

Intuitively, for instance, high-end vehicle models should be
more difficult and/or require more time to reverse engineer
than lower-end ones, due to the larger number of ECUs
installed onboard, and thus signals transiting on the bus. State-
of-the-art reverse engineering solutions have been altogether
tested on a large number of different vehicle models, thus
making the validation of thesis like this achievable in principle.
However, due to the diversity of requirements and testbeds in
the individual works, it is impossible to aggregate their results
to reach this conclusion.

DETROIT, a recent work by D. Pesé et al. [158], is designed
with the goal of becoming the first end-to-end framework to
cover the collection, reverse engineering, and distribution of
automotive data. It consists of a frontend, a backend, and
an open-source developer portal. The tool was tested on
two vehicles, showing promising results in terms of reverse
engineering accuracy, usability and time performance.

A current constraint of DETROIT is that it relies solely
on LibreCAN [61] for reverse engineering. The framework’s
modularity and adaptability should be enhanced so that a
variety of reverse engineering tools can be integrated, to enable
the scientific community to perform independent, comparable
research.

In conclusion, we believe that open source initiatives such
as DETROIT will not only simplify quantitative comparison of
existing reverse engineering techniques, but would also attract
and motivate a broader audience to begin contributing to this
topic.

C. Reverse Engineering Multiplexed CAN Frames

Some OEMs have recently started multiplexing different
sets of signals in frames with the same ID [159]. In simple
multiplexing, the value of a reference signal, called multiplexor,
is used to identify the set of signals that can be found in

Multiplexors:

S7

S5

S1 = 0 S3

S4

S6

S2

S8 S9

S1 = 1

S0 = 0

S0 = 0

S0 = 1

S0 = 2

S0, S1Cycle = 100 µs

Delay = 0 µs

Delay = 20 µs

Delay = 40 µs

Delay = 60 µs

Figure 24. Example of extended multiplexing. S0 and S1 correspond to the
multiplexor signals. Each combination of values uniquely identify a subset of
signals.

CAN Trace

Subtrace
ID X

Subtrace
ID Z...

is
multiplexed?

is
multiplexed?

yesno

tokenisation divide based on
multiplexor value

subtrace
value A

subtrace
value B...

tokenisation tokenisation

1.

2.

3.

Figure 25. Proposed pipeline for reverse engineering CAN with multiplex
frames.

the same frame. In extended multiplexing, there are multiple
hierarchically-ordered multiplexors that define the contents
of a frame. Similarly to the standard frames, frames with
multiplexed payloads are sent periodically. However, in order
to avoid collisions among frames associated with the same ID,
each frame is sent according to a delay with respect to the
base period of the cycle [160]. Figure 24 shows an example of
multiplexed frame with 4 multiplexor values (associated with
the same number of contents), whose basic cycle is 100 µs.

So far, the reverse engineering of CAN has focused exclu-
sively on simple CAN frames without multiplexed payloads.
Multiplexing data in each CAN frame can greatly affect
the performance of existing methodologies, in particular,
tokenization. In fact, tokenization assumes that consecutive
frames identified by the same ID carry the same signals within
the same positions in the payload. This assumption is no longer
valid in the case of multiplexing. All existing tokenization
algorithms output a single set of tokens uniquely identified by
their start and end position. Since different sets of tokens can
be associated with the same ID in the case of multiplexing, they
would produce spurious results. For instance, in case of BFR-
based algorithms, the bits of the payload carrying different
signals flip independently, thus leading to inconsistencies in
the BFR array.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 31

However, we argue that, by following the steps presented in
Figure 25, current methodologies can be efficiently adapted to
deal with multiplexing. Instead of evaluating the time series
of an ID as a whole, one can first focus on preliminarily
identifying whether the payload is multiplexed (step 1) and, if
yes, locate the multiplexor signal(s). Step 1 could be achieved
by looking for correlations between the flipping of certain
bits of the payload, suspected of being the multiplexors, and
the dynamicity of the rest of the payload. Assuming that the
multiplexors are always located at the beginning of the payload,
we could evaluate all the possible combinations of consecutive
bits in the first byte to identify cyclical patterns. Once the
multiplexor is known, it would be sufficient to split the time
series into sub-time-series, each corresponding to one value
of the multiplexor (or combination of values in the case of
multiple multiplexors) (step 2), and apply the target tokenization
algorithm (step 3).

D. CAN FD Reverse Engineering

As discussed in Section III, the major differences of CAN
FD from CAN 2.0 are the higher data transfer rate and the
presence of extended frames, whose payload length increases
from a maximum of 8 Byte to 64 Byte. A higher data rate
does not affect the reverse engineering process as long as the
chosen dongle for data collection is capable of recording all the
transiting CAN traffic without loss. As for the extended frames,
all the techniques presented in this survey can be potentially
adapted to take into account the increased length of the payload.
However, the resources and time required for algorithms that
have a high computational complexity may grow exponentially.
As a consequence, we suggest that future research on CAN FD
reverse engineering should also be conducted and benchmarked
with a particular focus on the computational complexity.

E. Key Takeaways

In this section, we proposed possible directions for future
research. The following is a list of the most important takeaways
from this section:

1) CAN reverse engineering methodologies could be im-
proved i) through generalization to make them more versa-
tile, ii) by combining multiple complementary approaches
proposed in the literature to increase the accuracy, iii) by
designing them to be highly modular for adaptability to
new ECUs, and iv) by making them entirely remote, to
ease the process.

2) Researchers should work on building a standardized
dataset to favor performance comparison among different
studies and attract newcomers. Based on the requirements
of the majority of published studies, we elaborated a
complete list of features that such a dataset should have.

3) Reverse engineering should be studied on traffic containing
multiplexed frames.

4) Reverse engineering should be studied on CAN FD traffic.

VII. FUTURE OPPORTUNITIES

The automotive industry is undergoing significant changes. A
variety of new mobility services are being implemented and will

soon be offered, ranging from intelligent traffic management to
platooning [161], [162]. The two main disruptions are brought
by the progress in the level of automation in driving and
the evolution of wireless V2X connectivity. In this section,
we reflect on the strong interconnection between autonomous
vehicles and in-vehicle networks and discuss how CAN reverse
engineering can help realize the full potential of these two
technologies.

A. Autonomous Vehicles

Autonomous vehicles are expected to bring disruptive
changes to our daily lives and businesses [163]–[165]. Table IX
describes the different levels of automation, as defined by the
Society of Automotive Engineers (SAE) required to achieve
fully driverless capabilities. As shown in the table, each level
represents a consistent step toward fully automated driving. At
the current stage, commercial vehicles are gradually shifting
from Level 2 to Level 3 [166].

Levels 4 and 5 of automation are expected to bring significant
benefits to society, such as a sharp decline in road fatalities
(estimated at -90 %) and a significant reduction in emissions
of pollutants (estimated at -60 %) [167]. In addition, billions
of dollar are expected to be saved by consumers.

However, there are many challenges and concerns that need
to be addressed before such levels of automation can be
achieved [168], [169]. Yaqoob et al. [168] identify six key
requirements that need to be addressed: i) high fault-tolerance,
ii) strict latency, iii) robust architecture, iv) efficient resource
management, v) fine-grained localization services, and vi) high
levels of security and privacy.

B. Wireless V2X Connectivity

When something unexpected happens, autonomous cars are
pushed to their breaking point. If there is any ambiguity about
the situation, the autopilot will make a decision to deactivate
the device for safety reasons, and the task of driving would
then be handed back to a human driver. However, critical
situations could also be handled by remotely controlling the
vehicle [170]. Currently, remote vehicle control is only possible
with an adequate CCAM infrastructure supported by 5G.

In addition to offering significantly higher bandwidth and
lower latency than LTE, 5G offers numerous advantages
for inter-vehicle communications [13], [171]–[173]. Network
slicing is often considered to be one of the main innovations
of 5G. Virtual network layers are separated within the core and
radio access network. For autonomous vehicles, this means
that safety-related data traffic will be prioritized over other
non-safety services.

Another benefit is the data processing and storage in data
centers located near transportation routes. These edge data
centers allow the network to process data even faster. The
virtual network layers and short transmission paths ensure the
key quality features of 5G technology. This can improve traffic
flow by, for example, allowing vehicles to move faster or slow
down when necessary.

While trials of V2X connectivity based on 5G are underway
around the world [174], the scientific community and the mobile

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 32

Table IX
SAE CLASSIFICATION OF AUTONOMOUS VEHICLES

Level of Automation Description

0 – No Automation The vehicle emits warnings and may act momentarily, but it lacks persistent control.
1 – Driver Assistance A singular automated system for driver assistance, such as steering or accelerating, is integrated into the

design of the vehicle (cruise control). The human driver continues to monitor the other parts of driving,
such as steering and braking. Adaptive cruise control is considered to belong to this level.

2 – Partial Driving Automa-
tion

The vehicle can control both the steering and acceleration. The automation in this scenario is not quite
the same as self-driving because a person is still in the driver’s seat and has the ability to take control of
the vehicle at any time.

3 – Conditional Driving Au-
tomation

The vehicle is equipped with environmental detection and is able to make decisions on its own. The
driver is still responsible for maintaining vigilance and being prepared to take control in the event that
the system is unable to complete the assignment.

4 – High Driving Automation The vehicles can drive in full autonomy, but are limited by geofencing, i.e. they can be used only in
places and modalities defined by the legal framework and the technological infrastructure.

5 – Full Driving Automation Geofencing is not applied and the vehicles are able to go anywhere and perform any task that can be
completed by an expert human driver.

operators are working to define the characteristics of the next-
generation cellular networks, i.e., 6G [175], [176]. In addition
to autonomous driving, 6G will be used to better support
the automotive use-cases already enabled by 5G and many
more [14], [177], [178]. The Automotive Edge Computing
Consortium (AECC) identifies four areas where 6G can bring
significant innovation [179], as listed below:

• Critical asset protection and public safety – the increased
bandwidth and device density provided by the 6G infras-
tructure provides can support the ability to remotely detect
threats and monitor the health of people and connected
devices.

• Vehicle Sensing and Cyber-Physical Fusion – the ability to
quantitatively assess and explore the physical environment
of cyberspace.

• Mobile Holograms – Displays that show 3D holograms
have the potential to usher in the next-generation of
infotainment systems [180].

• Augmented Reality (AR) – Additional AR options will be
available in the vehicle as a result of the increased wireless
bandwidth and hardware capabilities brought about by 6G.

C. CAN Reverse Engineering for CAM

Vehicle sensors are fundamental to achieving cooperative
awareness in connected and automated driving scenarios. These
sensors are, for example, intelligent camera systems that enable
vehicles to detect and share data about obstacles, traffic, road
conditions, and so on.

In addition to being equipped with wireless interfaces, these
devices are also typically connected to other ECUs in the
vehicle via wired networks to ensure a flow of real-time vehicle
status information. Due to the superior data throughput required
to support these new applications, OEMs are investing heavily
in Automotive Ethernet [181], an adaptation of traditional
Ethernet for in-vehicle networking, which provides high
bandwidth and deterministic communication.

Nevertheless, as discussed in Section I, CAN buses are
expected to be integrated into new in-vehicle network ar-
chitectures as subsystems connected to an Automotive Eth-
ernet backbone network due to their unique characteristics:
robustness, and low manufacturing and maintenance costs.

CAN bus reverse engineering will thus enhance its role in
helping aftermarket companies to read plaintext data from
inside vehicles and to develop new commercial solutions.

As discussed in Section VI-A, we anticipate that the
evolution of the above technologies could significantly increase
the complexity of CAN reverse engineering. A new generation
of methodologies for automating this process is likely to emerge,
further stimulating debate in the scientific community.

D. Key Takeaways

In this section, we discussed the impact of autonomous
vehicles on the automation of CAN reverse engineering. The
following is a list of key takeaways from this section:

• Autonomous vehicles and new generation cellular net-
works, such as 5G and 6G, are driving the definition of
new services and business cases in the automotive sector;

• Despite the rise of Automotive Ethernet as the backbone
of in-vehicle networking systems, CAN will remain in
the form of zonal subsystems;

• The new use-cases enabled by technologies in the areas of
self-driving vehicles and cellular connectivity will increase
the need to read real-time in-vehicle data to monitor the
vehicle status. CAN reverse engineering will therefore
continue to be a source of debate and innovation in
academia and automotive industry.

VIII. CONCLUSION

With the advent of V2X wireless connectivity and the
evolution of vehicular services and associated business models,
aftermarket and telematics companies are hungry for in-vehicle
data. This information is used to monitor and predict the health
of vehicles and their components. Most of this data comes
from CAN, the world’s most widely recognized and deployed
protocol for in-vehicle networks.

Since CAN data is not easily interpretable, CAN bus reverse
engineering has emerged as a prominent research topic in the
field of in-vehicle communication. Its purpose is to infer the
location, semantic meaning, and format of signals transiting on
the bus. This output can be used for real-time interpretation of
CAN data, a valuable source of information for researchers and

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 33

companies developing innovative solutions in the automotive
sector.

In this survey, we identified the characteristics to define
a reverse engineering approach manual, semi-automated or
automated. We then presented a comprehensive review of the
state-of-the-art methodologies in CAN bus reverse engineering.
We provided the first categorization of tokenization and trans-
lation algorithms based on the common ground characteristics
of the followed approaches. Furthermore, we identified the
strengths and weaknesses of each of these approaches to
provide a benchmark for future research. Due to the lack
of a standardized dataset for quantitative comparison in the
literature, we proceeded to evaluate the related work based on a
number of criteria, including decoded properties, requirements,
intrusiveness, and achieved level of automation.

We then discussed the implications of automated CAN
reverse engineering for network security, driver safety and
privacy, and OEM intellectual property infringement. Regarding
network security threats, we summarized the major attacks
on CAN in the literature. In particular, we highlighted the
fundamental role that CAN reverse engineering plays in high-
impact attacks. We then discussed the potential risks associated
with fully automating the reverse engineering process in highly
connected mobility scenarios. This analysis suggests that the
automation of this process has a negative impact on the security
of the network and can potentially lead to large-scale remote
attacks.

Regarding driver privacy violation, we introduced and
compared the main related work on driver fingerprinting
exploiting CAN data. In this context, we concluded that the
demonstrated ability of ML models to link CAN data to drivers,
combined with the access to clear CAN data provided by
reverse engineering, poses a threat to driver privacy. We have
discussed the privacy concerns for drivers in highly connected
mobility scenarios in authoritarian countries.

In this context, we evaluated whether the countermeasures
proposed in the literature against security, safety, and privacy
threats are sufficient to prevent not only the attacks, but also the
reverse engineering. According to our analysis, these defenses
are insufficient and/or not commercially viable.

Based on the results of our analysis, CAN reverse engi-
neering is a double-edged sword. On the one hand, CAN
reverse engineering is a truly beneficial tool for researchers
and aftermarket companies, which can use it to explore and
implement new services and solutions, thus contributing to
the progress of intelligent transportation systems. On the other
hand, it poses significant security and privacy threats that should
be addressed by the OEMs.

Future research should aim to define the theoretical limits
of automated CAN bus reverse engineering in terms of
equipment requirements, time complexity, and output accuracy.
In particular, researchers and companies should improve the
current solutions to make them more reliable, faster, and more
general. When it is applicable, a combination of multiple
approaches could provide better performance than using each
of them alone.

In addition, reverse engineering of new generation CAN-
FD and multiplexed frames should be explored. We believe

that with minor additional modifications it is possible to fully
exploit all the proposed solutions. Future work should focus
on validating our assumptions.

With the intention to facilitate future research and to attract
new researchers to the topic, we have outlined the fundamental
principles for the creation of a first standardized dataset for
the quantitative comparison of CAN reverse engineering work.

Finally, we have presented the opportunities offered by CAN
reverse engineering with respect to future technologies for
CCAM. We believe that aftermarket and telematics companies
will need access to real-time in-vehicle data describing the
state of the vehicle in order to support their operations.

REFERENCES

[1] T. Derenda, M. Zanne, M. Zöldy, and A. Torok, “Automatization in
road transport: a review,” Production Engineering Archives, vol. 20,
pp. 3–7, Sep. 2018.

[2] M. Bertoncello, G. Camplone, P. Gao, et al., “Monetizing car data—new
service business opportunities to create new customer benefits,”
McKinsey & Company, 2016.

[3] S. Leibson. “A History of Early Microcontrollers, Part 5: The Motorola
6801.” (2022), [Online]. Available: https://www.eejournal.com/article/a-
history-of-early-microcontrollers-part-5-the-motorola-6801/.

[4] Robert Bosch GmbH. (), [Online]. Available: https : / / www .
boschautoparts.com/ (visited on 01/13/2021).

[5] ISO 11898-1:2015, “Road vehicles — Controller area network (CAN)
— Part 1: Data link layer and physical signalling,” International
Organization for Standardization, Standard, Dec. 2015.

[6] ISO 11898-2:2016, “Road vehicles — Controller area network (CAN)
— Part 2: High-speed medium access unit,” International Organization
for Standardization, Standard, Dec. 2016.

[7] ISO 11898-3:2006, “Road vehicles — Controller area network (CAN)
— Part 3: Low-speed, fault-tolerant, medium-dependent interface,”
International Organization for Standardization, Standard, Jun. 2006.

[8] National Instruments Corp. “Controller Area Network (CAN)
Overview.” (Sep. 2020), [Online]. Available: https://www.ni.com/en-
us / innovations / white - papers / 06 / controller - area - network -- can --
overview.html (visited on 12/06/2021).

[9] A. Neumann, M. J. Mytych, D. Wesemann, L. Wisniewski, and J.
Jasperneite, “Approaches for In-vehicle Communication – An Analysis
and Outlook,” in International Conference on Computer Networks,
Springer, Jun. 2017, pp. 395–411.

[10] R. G. Engoulou, M. Bellaiche, S. Pierre, and A. Quintero, “VANET
security surveys,” Computer Communications, vol. 44, pp. 1–13, 2014.

[11] M. Lee and T. Atkison, “Vanet applications: Past, present, and future,”
Vehicular Communications, vol. 28, p. 100 310, 2021.

[12] J. B. Kenney, “Dedicated short-range communications (DSRC) stan-
dards in the United States,” Proceedings of the IEEE, vol. 99, no. 7,
pp. 1162–1182, 2011.

[13] M. H. C. Garcia, A. Molina-Galan, M. Boban, et al., “A tutorial on 5G
NR V2X communications,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 3, pp. 1972–2026, 2021.

[14] X. Chen, Z. Huang, and S. Chen, “Vehicular communication channel
measurement, modelling, and application for beyond 5G and 6G,” IET
Communications, 2020.

[15] O. Burkacky, M. Kellner, J. Deichmann, P. Keuntje, and J. Werra,
“Software will be what differentiates players in the automotive industry
within a few years. Incumbents must make significant shifts in
technology, competitive dynamics, and talent.,” McKinsey & Company,
2021.

[16] U. Fugiglando, E. Massaro, P. Santi, et al., “Driving behavior analysis
through CAN bus data in an uncontrolled environment,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 20, no. 2, pp. 737–748,
2018.

[17] L. Nkenyereye and J.-W. Jang, “Integration of big data for querying
CAN bus data from connected car,” in 9th International Conference
on Ubiquitous and Future Networks (ICUFN), Jul. 2017, pp. 946–950.

[18] F. B. Insights. “Vehicle-Telematics Market Size, Share and Covid-19
Impact.” (), [Online]. Available: https://www.fortunebusinessinsights.
com/vehicle-telematics-market-102071 (visited on 01/17/2023).

[19] SAE, “Recommended practice for a serial control and communications
vehicle network,” SAE J1939 Standards Collection, 2010.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 34

[20] A. Buscemi, G. Castignani, T. Engel, and I. Turcanu, “A Data-
Driven Minimal Approach for CAN Bus Reverse Engineering,” in 3rd
IEEE Connected and Automated Vehicles Symposium (CAVS), Victoria,
Canada: IEEE, Oct. 2020.

[21] M. E. Verma, R. A. Bridges, J. J. Sosnowski, S. C. Hollifield,
and M. D. Iannacone, “CAN-D: A Modular Four-Step Pipeline for
Comprehensively Decoding Controller Area Network Data,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 10, pp. 9685–9700,
2021.

[22] M. Verma, R. Bridges, and S. Hollifield, “ACTT: Automotive CAN
tokenization and translation,” in International Conference on Compu-
tational Science and Computational Intelligence (CSCI), IEEE, 2018,
pp. 278–283.

[23] T. Huybrechts, Y. Vanommeslaeghe, D. Blontrock, G. Van Barel, and
P. Hellinckx, “Automatic reverse engineering of CAN bus data using
machine learning techniques,” in International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, Springer, 2017, pp. 751–
761.

[24] A. Buscemi, I. Turcanu, G. Castignani, R. Crunelle, and E. Thomas,
“CANMatch: A Fully Automated Tool for CAN Bus Reverse Engi-
neering based on Frame Matching,” IEEE Transactions on Vehicular
Technology, 2021, to appear.

[25] U. Ezeobi, H. Olufowobi, C. Young, J. Zambreno, and G. Bloom,
“Reverse Engineering Controller Area Network Messages using Unsu-
pervised Machine Learning,” IEEE Consumer Electronics Magazine,
2020.

[26] W. B. Moore, H. Tan, M. Sherr, and M. A. Maloof, “Multi-class
traffic morphing for encrypted voip communication,” in International
Conference on Financial Cryptography and Data Security, Springer,
2015, pp. 65–85.

[27] I. O. of Motor Vehicle Manufacturers. “2017 Production statistics.”
(2018), [Online]. Available: https://www.oica.net/category/production-
statistics/.

[28] O. Burkacky, J. Deichmann, and J. P. Stein, “Automotive software and
electronics 2030,” McKinsey & Company, 2019.

[29] I. Studnia, V. Nicomette, E. Alata, Y. Deswarte, M. Kaâniche, and
Y. Laarouchi, “Survey on security threats and protection mechanisms
in embedded automotive networks,” in 2013 43rd Annual IEEE/IFIP
Conference on Dependable Systems and Networks Workshop (DSN-W),
IEEE, 2013, pp. 1–12.

[30] O. Avatefipour and H. Malik, “State-of-the-Art Survey on In-Vehicle
Network Communication (CAN-Bus) Security and Vulnerabilities,”
CoRR, vol. abs/1802.01725, 2018. eprint: 1802 . 01725. [Online].
Available: http://arxiv.org/abs/1802.01725.

[31] M. Bozdal, M. Samie, and I. Jennions, “A survey on can bus protocol:
Attacks, challenges, and potential solutions,” in 2018 International
Conference on Computing, Electronics & Communications Engineering
(iCCECE), IEEE, 2018, pp. 201–205.

[32] B. Groza and P.-S. Murvay, “Security solutions for the controller
area network: Bringing authentication to in-vehicle networks,” IEEE
Vehicular Technology Magazine, vol. 13, no. 1, pp. 40–47, 2018.

[33] S.-F. Lokman, A. T. Othman, and M.-H. Abu-Bakar, “Intrusion
detection system for automotive Controller Area Network (CAN) bus
system: a review,” EURASIP Journal on Wireless Communications and
Networking, vol. 2019, no. 1, pp. 1–17, 2019.

[34] G. Dupont, J. den Hartog, S. Etalle, and A. Lekidis, “A survey of
network intrusion detection systems for controller area network,” in
2019 IEEE International Conference on Vehicular Electronics and
Safety (ICVES), IEEE, 2019, pp. 1–6.

[35] C. Young, J. Zambreno, H. Olufowobi, and G. Bloom, “Survey of
automotive controller area network intrusion detection systems,” IEEE
Design & Test, vol. 36, no. 6, pp. 48–55, 2019.

[36] M. Gmiden, M. H. Gmiden, and H. Trabelsi, “Cryptographic and
Intrusion Detection System for automotive CAN bus: Survey and
contributions,” in 2019 16th International Multi-Conference on Systems,
Signals & Devices (SSD), IEEE, 2019, pp. 158–163.

[37] S. Jafarnejad, “Machine Learning-based Methods for Driver Identifica-
tion and Behavior Assessment: Applications for CAN and Floating Car
Data,” Ph.D. dissertation, University of Luxembourg, Esch-sur-Alzette,
Luxembourg, 2020.

[38] H. J. Jo and W. Choi, “A Survey of Attacks on Controller Area Networks
and Corresponding Countermeasures,” IEEE Transactions on Intelligent
Transportation Systems, 2021.

[39] E. J. Chikofsky and J. H. Cross, “Reverse Engineering and Design
Recovery: A Taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17,
1990.

[40] A. Goldsworthy, The fall of Carthage : the Punic Wars, 265-146 BC.
Cassel Military Paperbacks, 2006.

[41] N. M. of the US Air Force. “Soviet Union impounds and copies B-
29.” (2015), [Online]. Available: http://www.nationalmuseum.af.mil/
factsheets/factsheet.asp?id=1852 (visited on 11/24/2021).

[42] V. Raja and K. Fernandes, Reverse Engineering: A Industrial Perspec-
tive. Springer-Verlag London Limited, 2008.

[43] A. F. Villaverde and R. J. Banga, “Reverse engineering and identification
in systems biology: strategies, perspectives and challenges,” 2013.

[44] I. Pyle, “Software Reuse and Reverse Engineering in Practice,”
Computing & Control Engineering Journal, vol. 4, Jan. 1993.

[45] K. Wong, S. R. Tilley, H. A. Muller, and M.-A. Storey, “Structural
redocumentation: A case study,” IEEE Software, vol. 12, no. 1, pp. 46–
54, 1995.

[46] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 15, no. 2,
pp. 87–109, 2003.

[47] Microsoft. “Use UML to reverse-engineer Visual Studio .NET source
code.” (2010), [Online]. Available: https://support.microsoft.com/en-
us/office/use-uml-to-reverse-engineer-visual-studio-net-source-code-
0c4fc969-daa6-4169-a214-e9f554bbeaf7 (visited on 11/24/2021).

[48] C. Treude, F. Figueira Filho, M.-A. Storey, and M. Salois, “An
exploratory study of software reverse engineering in a security context,”
in 2011 18th Working Conference on Reverse Engineering, IEEE, 2011,
pp. 184–188.

[49] E. Eilam, Reversing: Secrets of Reverse Engineering. USA: John Wiley
& Sons, Inc., 2005.

[50] E. Dupuy. “Java Decompiler.” (), [Online]. Available: http : / / java -
decompiler.github.io/ (visited on 11/25/2021).

[51] Redgate. “.NET Reflector.” (), [Online]. Available: https://www.red-gate.
com/products/dotnet-development/reflector/ (visited on 11/25/2021).

[52] Hex-Rays. “IDA-Pro.” (), [Online]. Available: https://hex-rays.com/ida-
pro/ (visited on 11/25/2021).

[53] B. D. Sija, Y.-H. Goo, K.-S. Shim, H. Hasanova, M.-S. Kim, and Z. Liu,
“A Survey of Automatic Protocol Reverse Engineering Approaches,
Methods, and Tools on the Inputs and Outputs View,” vol. 2018, 2018.

[54] Wireshark. “Wireshark - Go deep.” (), [Online]. Available: https://www.
wireshark.org/ (visited on 11/26/2021).

[55] J. Antunes, N. Neves, and P. Verissimo, “Reverse Engineering of
Protocols from Network Traces,” in 2011 18th Working Conference on
Reverse Engineering, 2011, pp. 169–178.

[56] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic Protocol
Reverse Engineering from Network Traces,” in 16th USENIX Security
Symposium (USENIX Security 07), Boston, MA: USENIX Association,
Aug. 2007. [Online]. Available: https://www.usenix.org/conference/16th-
usenix- security- symposium/discoverer- automatic- protocol- reverse-
engineering-network.

[57] R. Lin, O. Li, Q. Li, and Y. Liu, “Unknown network protocol
classification method based on semi-supervised learning,” in 2015 IEEE
International Conference on Computer and Communications (ICCC),
2015, pp. 300–308.

[58] A. Blin. “CAN bus reverse-engineering with Arduino and iOS.” (),
[Online]. Available: https:/ /medium.com/@alexandreblin/can- bus-
reverse-engineering-with-arduino-and-ios-5627f2b1709a (visited on
08/10/2021).

[59] C. Smith. “The Car Hacker’s Handbook: A Guide for the Penetration
Tester.” (), [Online]. Available: https:/ /publicism.info/engineering/
penetration/6.html (visited on 08/10/2021).

[60] A. Buscemi, I. Turcanu, G. Castignani, R. Crunelle, and T. Engel,
“Poster: A Methodology for Semi-Automated CAN Bus Reverse
Engineering,” in 13th IEEE Vehicular Networking Conference (VNC
2021), to appear, IEEE, Nov. 2021.

[61] M. D. Pesé, T. Stacer, C. A. Campos, E. Newberry, D. Chen, and
K. G. Shin, “LibreCAN: Automated CAN Message Translator,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS), ACM, 2019, pp. 2283–2300.

[62] ISO 7498-4:1989, “Information processing systems - Open Systems
Interconnection - Basic Reference Model,” International Organization
for Standardization, Standard, Nov. 1989.

[63] M. Markovitz and A. Wool, “Field classification, modeling and anomaly
detection in unknown CAN bus networks,” Vehicular Communications,
vol. 9, pp. 43–52, 2017.

[64] M. Marchetti and D. Stabili, “READ: Reverse engineering of automotive
data frames,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 4, pp. 1083–1097, 2018.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 35

[65] CSS Electronics. “CLX000 Intro, Release FW 5.83.” (2021), [Online].
Available: https : / / canlogger . csselectronics . com / clx000 - intro /
CLX000Intro.pdf (visited on 01/13/2021).

[66] PEAK System. (2020), [Online]. Available: https://www.peak-system.
com/PCAN-USB-FD.365.0.html (visited on 06/03/2020).

[67] KVASER AB. “Kvaser Leaf Light v2 User’s Guide.” (2014), [Online].
Available: https://www.kvaser.com/software/7330130980146/V2_0_0/
kvaser_leaf_light_v2_usersguide.pdf (visited on 11/16/2021).

[68] “Arduino.” (), [Online]. Available: https://www.arduino.cc/ (visited on
11/16/2021).

[69] “RaspberryPi.” (), [Online]. Available: https://www.raspberrypi.org/
(visited on 11/16/2021).

[70] ISO 15031-3:2016, “Road vehicles — Communication between vehicle
and external equipment for emissions-related diagnostics — Part 3:
Diagnostic connector and related electrical circuits: Specification and
use,” International Organization for Standardization, Standard, Apr.
2016.

[71] ISO 15031-4:2014, “Road vehicles — Communication between vehicle
and external equipment for emissions-related diagnostics — Part 4:
External test equipment,” Standard, Feb. 2014.

[72] Baltijos automobilių diagnostikos sistemos. “OBD2 Codes and Mean-
ings.” (), [Online]. Available: https : / /bads . lt /en /obd2- codes- and-
meanings-2/ (visited on 11/16/2021).

[73] Vector. “Managing Network and Communication Data with CANdb++.”
(), [Online]. Available: https://www.vector.com/int/en/products/products-
a-z/software/candb/ (visited on 05/27/2020).

[74] Kvaser. “CANtrace – CAN bus Analyzer software.” (), [Online].
Available: https : / /www.kvaser.com/software /cantrace- pc/ (visited
on 11/26/2021).

[75] Vector. “CANalyzer.” (), [Online]. Available: https : / / www. vector.
com/int /en/products /products- a- z /software/canalyzer/ (visited on
11/26/2021).

[76] C. AI. “OpenDBC.” (), [Online]. Available: https://github.com/commaai/
opendbc (visited on 08/05/2021).

[77] D. Frassinelli, S. Park, and S. Nürnberger, “I Know Where You Parked
Last Summer : Automated Reverse Engineering and Privacy Analysis
of Modern Cars,” in 2020 IEEE Symposium on Security and Privacy
(SP), 2020, pp. 1401–1415.

[78] B. C. Nolan, S. Graham, B. Mullins, and C. S. Kabban, “Unsupervised
time series extraction from Controller Area Network payloads,” in
IEEE 88th Vehicular Technology Conference (VTC-Fall), IEEE, 2018,
pp. 1–5.

[79] W. Choi, S. Lee, K. Joo, H. J. Jo, and D. H. Lee, “An Enhanced Method
for Reverse Engineering CAN Data Payload,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 4, pp. 3371–3381, 2021.

[80] M. Jaynes, R. Dantu, R. Varriale, and N. Evans, “Automating ECU
identification for vehicle security,” in 15th International Conference on
Machine Learning and Applications (ICMLA), IEEE, 2016, pp. 632–635.

[81] M. R. Moore, R. A. Bridges, F. L. Combs, and A. L. Anderson,
“Data-Driven Extraction of Vehicle States From CAN Bus Traffic for
Cyberprotection and Safety,” IEEE Consumer Electronics Magazine,
vol. 8, no. 6, pp. 104–110, 2019.

[82] C. Young, J. Svoboda, and J. Zambreno, “Towards Reverse Engineering
Controller Area Network Messages Using Machine Learning,” in 2020
IEEE 6th World Forum on Internet of Things (WF-IoT), IEEE, 2020,
pp. 1–6.

[83] W. H. Day and H. Edelsbrunner, “Efficient algorithms for agglomerative
hierarchical clustering methods,” Journal of classification, vol. 1, no. 1,
pp. 7–24, 1984.

[84] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise.,”
in Kdd, vol. 96, 1996, pp. 226–231.

[85] E. B. Fowlkes and C. L. Mallows, “A Method for Comparing
Two Hierarchical Clusterings,” Journal of the American Statistical
Association, vol. 78, no. 383, pp. 553–569, 1983.

[86] H. Wen, Q. Zhao, Q. A. Chen, and Z. Lin, “Automated cross-platform
reverse engineering of CAN bus commands from mobile apps,” in
Proceedings 2020 Network and Distributed System Security Symposium
(NDSS’20), 2020.

[87] Y. L. Le Yu, P. Jing, X. Luo, et al., “Towards Automatically Reverse
Engineering Vehicle Diagnostic Protocols,” in Proc. USENIX Security,
vol. 2022.

[88] ISO 14230-3:2020, “Road vehicles — Diagnostic systems — Keyword
Protocol 2000 — Part 3: Application layer,” International Organization
for Standardization, Standard, 1999.

[89] ISO 14229-1:2020, “Road vehicles — In-vehicle Ethernet — Part 1:
General information and definitions,” International Organization for
Standardization, Standard, Feb. 2020.

[90] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous
vehicles: opportunities, barriers and policy recommendations,” Trans-
portation Research Part A: Policy and Practice, vol. 77, pp. 167–181,
2015.

[91] C. Miller and C. Valasek, “Remote exploitation of an unaltered
passenger vehicle,” Black Hat USA, vol. 2015, no. S 91, 2015.

[92] K.-T. Cho and K. G. Shin, “Fingerprinting Electronic Control Units
for Vehicle Intrusion Detection,” in 25th USENIX Security Symposium
(USENIX Security 16), Aug. 2016, pp. 911–927.

[93] C. Miller and C. Valasek, “Adventures in automotive networks and
control units,” Def Con, vol. 21, no. 260-264, pp. 15–31, 2013.

[94] K. Koscher, A. Czeskis, F. Roesner, et al., “Experimental security
analysis of a modern automobile,” in IEEE symposium on security and
privacy, IEEE, 2010, pp. 447–462.

[95] S. Jafarnejad, L. Codeca, W. Bronzi, R. Frank, and T. Engel, “A car
hacking experiment: When connectivity meets vulnerability,” in 2015
IEEE Globecom Workshops (GC Wkshps), IEEE, 2015, pp. 1–6.

[96] S. Woo, H. J. Jo, and D. H. Lee, “A Practical Wireless Attack on
the Connected Car and Security Protocol for In-Vehicle CAN,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 2,
pp. 993–1006, 2015.

[97] A. Palanca, E. Evenchick, F. Maggi, and S. Zanero, “A stealth, selective,
link-layer denial-of-service attack against automotive networks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, Springer, 2017, pp. 185–206.

[98] K. Iehira, H. Inoue, and K. Ishida, “Spoofing attack using bus-off
attacks against a specific ECU of the CAN bus,” in 2018 15th IEEE
Annual Consumer Communications & Networking Conference (CCNC),
IEEE, 2018, pp. 1–4.

[99] Y. Lee, S. Woo, J. Lee, Y. Song, H. Moon, and D. H. Lee, “Enhanced
Android app-repackaging attack on in-vehicle network,” Wireless
Communications and Mobile Computing, vol. 2019, 2019.

[100] A. K. Mandal, F. Panarotto, A. Cortesi, P. Ferrara, and F. Spoto, “Static
analysis of Android Auto infotainment and on-board diagnostics II
apps,” Software: Practice and Experience, vol. 49, no. 7, pp. 1131–1161,
2019.

[101] H. Wen, Q. A. Chen, and Z. Lin, “{Plug-N-Pwned}: Comprehensive
Vulnerability Analysis of {OBD-II} Dongles as A New {Over-the-
Air} Attack Surface in Automotive {IoT},” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 949–965.

[102] H. J. Jo, W. Choi, S. Y. Na, S. Woo, and D. H. Lee, “Vulnerabilities
of android OS-based telematics system,” Wireless Personal Communi-
cations, vol. 92, no. 4, pp. 1511–1530, 2017.

[103] S. Nie, L. Liu, and Y. Du, “Free-fall: Hacking tesla from wireless to
can bus,” Briefing, Black Hat USA, vol. 25, pp. 1–16, 2017.

[104] S. Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy, “A Security
Analysis of an {In-Vehicle} Infotainment and App Platform,” in 10th
USENIX Workshop on Offensive Technologies (WOOT 16), 2016.

[105] K. Kim, J. S. Kim, S. Jeong, J.-H. Park, and H. K. Kim, “Cybersecurity
for autonomous vehicles: Review of attacks and defense,” Computers
& Security, vol. 103, p. 102 150, 2021.

[106] M. Jedh, L. B. Othmane, N. Ahmed, and B. Bhargava, “Detection
of message injection attacks onto the can bus using similarities
of successive messages-sequence graphs,” IEEE Transactions on
Information Forensics and Security, vol. 16, pp. 4133–4146, 2021.

[107] X. Duan, H. Yan, D. Tian, J. Zhou, J. Su, and W. Hao, “In-
Vehicle CAN Bus Tampering Attacks Detection for Connected and
Autonomous Vehicles Using an Improved Isolation Forest Method,”
IEEE Transactions on Intelligent Transportation Systems, 2021.

[108] Q. Wang, Z. Lu, and G. Qu, “An entropy analysis based intrusion
detection system for controller area network in vehicles,” in 2018 31st
IEEE International System-on-Chip Conference (SOCC), IEEE, 2018,
pp. 90–95.

[109] F. B. of Investigation. “Motor Vehicles Increasingly Vulnerable to
Remote Exploits.” (2016), [Online]. Available: https://www.ic3.gov/
Media/Y2016/PSA160317 (visited on 11/26/2021).

[110] A. Buscemi, I. Turcanu, G. Castignani, and T. Engel, “On Frame
Fingerprinting and Controller Area Networks Security in Connected
Vehicles,” in 2022 IEEE 19th Annual Consumer Communications &
Networking Conference (CCNC), IEEE, 2022, pp. 821–826.

[111] A. Buscemi, I. Turcanu, G. Castignani, and T. Engel, “Preventing Frame
Fingerprinting in Controller Area Network Through Traffic Mutation,”
in IEEE ICC 2022 Workshop-DDINS, Seoul 16-20 May 2022, 2022.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 36

[112] E. Öztürk and E. Erzin, “Driver status identification from driving
behavior signals,” in Digital signal processing for in-vehicle systems
and safety, Springer, 2012, pp. 31–55.

[113] C. Zhang, M. Patel, S. Buthpitiya, K. Lyons, B. Harrison, and
G. D. Abowd, “Driver classification based on driving behaviors,” in
Proceedings of the 21st International Conference on Intelligent User
Interfaces, 2016, pp. 80–84.

[114] M. Martinez, J. Echanobe, and I. del Campo, “Driver identification and
impostor detection based on driving behavior signals,” in 2016 IEEE
19th International Conference on Intelligent Transportation Systems
(ITSC), IEEE, 2016, pp. 372–378.

[115] D. Hallac, A. Sharang, R. Stahlmann, et al., “Driver identification
using automobile sensor data from a single turn,” in 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC),
IEEE, 2016, pp. 953–958.

[116] M. Enev, A. Takakuwa, K. Koscher, and T. Kohno, “Automobile Driver
Fingerprinting.,” Proc. Priv. Enhancing Technol., vol. 2016, no. 1,
pp. 34–50, 2016.

[117] B. I. Kwak, J. Woo, and H. K. Kim, “Know your master: Driver
profiling-based anti-theft method,” in 2016 14th Annual Conference on
Privacy, Security and Trust (PST), IEEE, 2016, pp. 211–218.

[118] B. Wang, S. Panigrahi, M. Narsude, and A. Mohanty, “Driver identifi-
cation using vehicle telematics data,” SAE International, Tech. Rep.,
2017.

[119] D. Jeong, M. Kim, K. Kim, et al., “Real-time driver identification
using vehicular big data and deep learning,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), IEEE, 2018,
pp. 123–130.

[120] S. Ezzini, I. Berrada, and M. Ghogho, “Who is behind the wheel?
Driver identification and fingerprinting,” Journal of Big Data, vol. 5,
no. 1, pp. 1–15, 2018.

[121] S. Lestyan, G. Acs, G. Biczók, and Z. Szalay, “Extracting vehicle sensor
signals from CAN logs for driver re-identification,” arXiv preprint
arXiv:1902.08956, 2019.

[122] H. Abut, H. Erdoğan, A. Erçil, et al., “Data collection with" UYANIK":
too much pain; but gains are coming,” 2007.

[123] W. Bi and J. Kwok, “Efficient multi-label classification with many
labels,” in International conference on machine learning, PMLR, 2013,
pp. 405–413.

[124] The Mechanic Doctor. “ECU Remapping | What Is It And Is It Safe For
Your Car?” (2019), [Online]. Available: https://www.themechanicdoctor.
com/what-is-ecu-remapping/ (visited on 09/29/2022).

[125] Tuning Blog. “Not only positive - The chip tuning and its dangers.”
(2019), [Online]. Available: https://www.tuningblog.eu/en/kategorien/
tipps _ tuev - dekra - u - co / chiptuning - gefahren - 241574/ (visited on
09/29/2022).

[126] Legal Information Institute-Cornell University. “Reverse engineering.”
(2021), [Online]. Available: https://www.law.cornell.edu/wex/reverse_
engineering (visited on 09/29/2022).

[127] R. Kammerer, B. Frömel, and A. Wasicek, “Enhancing security in
CAN systems using a star coupling router,” in 7th IEEE International
Symposium on Industrial Embedded Systems (SIES’12), IEEE, 2012,
pp. 237–246.

[128] M. Bozdal, M. Samie, S. Aslam, and I. Jennions, “Evaluation of CAN
Bus Security Challenges,” Sensors, vol. 20, no. 8, 2020. [Online].
Available: https://www.mdpi.com/1424-8220/20/8/2364.

[129] T. P. Doan and S. Ganesan, “CAN crypto FPGA chip to secure data
transmitted through CAN FD bus using AES-128 and SHA-1 algorithms
with a symmetric key,” SAE Technical Paper, Tech. Rep., 2017.

[130] A. S. Siddiqui, Y. Gui, J. Plusquellic, and F. Saqib, “Secure commu-
nication over CANBus,” in 2017 IEEE 60th International Midwest
Symposium on Circuits and Systems (MWSCAS), IEEE, 2017, pp. 1264–
1267.

[131] A. Hanacek and M. Sysel, “Design and implementation of an integrated
system with secure encrypted data transmission,” in Computer Science
On-line Conference, Springer, 2016, pp. 217–224.

[132] A. Van Herrewege, D. Singelee, and I. Verbauwhede, “CANAuth-a
simple, backward compatible broadcast authentication protocol for CAN
bus,” in ECRYPT workshop on Lightweight Cryptography, ECRYPT,
vol. 2011, 2011, p. 20.

[133] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita, and S.
Horihata, “CaCAN-centralized authentication system in CAN (controller
area network),” in 14th Int. Conf. on Embedded Security in Cars (ESCAR
2014), 2014.

[134] Q. Wang and S. Sawhney, “VeCure: A practical security framework to
protect the CAN bus of vehicles,” in 2014 International Conference
on the Internet of Things (IOT), IEEE, 2014, pp. 13–18.

[135] K. Han, A. Weimerskirch, and K. G. Shin, “A practical solution to
achieve real-time performance in the automotive network by random-
izing frame identifier,” Proc. Eur. Embedded Secur. Cars (ESCAR),
pp. 13–29, 2015.

[136] S. Nürnberger and C. Rossow, “VatiCAN–vetted, authenticated can
bus,” in International Conference on Cryptographic Hardware and
Embedded Systems, Springer, 2016, pp. 225–237.

[137] J. Van Bulck, J. T. Mühlberg, and F. Piessens, “VulCAN: Efficient
component authentication and software isolation for automotive control
networks,” in Proceedings of the 33rd Annual Computer Security
Applications Conference, 2017, pp. 225–237.

[138] Autosar. “Specification of Secure Onboard Communication.” (),
[Online]. Available: https : / / www . autosar . org / fileadmin /
user _ upload / standards / classic / 20 - 11 / AUTOSAR _ SWS _
SecureOnboardCommunication.pdf (visited on 11/30/2020).

[139] M. D. Pesé, J. W. Schauer, J. Li, and K. G. Shin, “S2-CAN: Sufficiently
Secure Controller Area Network,” in Annual Computer Security
Applications Conference, ser. ACSAC, Virtual Event, USA: Association
for Computing Machinery, 2021, pp. 425–438. [Online]. Available:
https://doi.org/10.1145/3485832.3485883.

[140] J. Halabi and H. Artail, “A lightweight synchronous cryptographic
hash chain solution to securing the vehicle CAN bus,” in 2018 IEEE
International Multidisciplinary Conference on Engineering Technology
(IMCET), IEEE, 2018, pp. 1–6.

[141] Z. Lu, Q. Wang, X. Chen, G. Qu, Y. Lyu, and Z. Liu, “LEAP:
A lightweight encryption and authentication protocol for in-vehicle
communications,” in 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), IEEE, 2019, pp. 1158–1164.

[142] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21 260, 2008.

[143] A.-I. Radu and F. D. Garcia, “LeiA: A lightweight authentication
protocol for CAN,” in European Symposium on Research in Computer
Security, Springer, 2016, pp. 283–300.

[144] S. U. Sagong, X. Ying, A. Clark, L. Bushnell, and R. Poovendran,
“Cloaking the clock: emulating clock skew in controller area networks,”
in 2018 ACM/IEEE 9th International Conference on Cyber-Physical
Systems (ICCPS), IEEE, 2018, pp. 32–42.

[145] A. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based anomaly
detection for the automotive CAN bus,” in 2015 World Congress on
Industrial Control Systems Security (WCICSS), IEEE, 2015, pp. 45–49.

[146] Y. Hamada, M. Inoue, H. Ueda, Y. Miyashita, and Y. Hata, “Anomaly-
based intrusion detection using the density estimation of reception
cycle periods for in-vehicle networks,” SAE International Journal of
Transportation Cybersecurity and Privacy, vol. 1, no. 11-01-01-0003,
pp. 39–56, 2018.

[147] H. Lee, S. H. Jeong, and H. K. Kim, “OTIDS: A novel intrusion
detection system for in-vehicle network by using remote frame,” in
2017 15th Annual Conference on Privacy, Security and Trust (PST),
IEEE, 2017, pp. 57–5709.

[148] E. Seo, H. M. Song, and H. K. Kim, “Gids: Gan based intrusion detec-
tion system for in-vehicle network,” in 2018 16th Annual Conference
on Privacy, Security and Trust (PST), IEEE, 2018, pp. 1–6.

[149] B. Groza and P.-S. Murvay, “Efficient intrusion detection with bloom
filtering in controller area networks,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 4, pp. 1037–1051, 2018.

[150] U. E. Larson, D. K. Nilsson, and E. Jonsson, “An approach to
specification-based attack detection for in-vehicle networks,” in 2008
IEEE Intelligent Vehicles Symposium, IEEE, 2008, pp. 220–225.

[151] W. Si, D. Starobinski, and M. Laifenfeld, “Protocol-compliant DoS
attacks on can: Demonstration and mitigation,” in 2016 IEEE 84th
vehicular technology conference (VTC-Fall), IEEE, 2016, pp. 1–7.

[152] G. Sadanand. “Motorcycle ECU (Engine Control Unit) Explained.”
(2019), [Online]. Available: https : / / www . bikedekho . com / news /
motorcycle-ecu-engine-control-unit-explained (visited on 01/04/2022).

[153] L. van Dijk. “Future Vehicle Networks and ECUs: Architecture and
Technology considerations.” (2017), [Online]. Available: https://www.
nxp . com / docs / en / white - paper / FVNECUA4WP. pdf (visited on
01/04/2022).

[154] G. C. Congress. “IHS Markit: sales of automotive ECUs to hit $211B
in 2030, 5% CAGR.” (2017), [Online]. Available: https://www.nxp.
com/docs/en/white-paper/FVNECUA4WP.pdf (visited on 01/04/2022).

[155] C. Geng, S. Huang, and S. Chen, “Recent Advances in Open Set
Recognition: A Survey,” CoRR, vol. abs/1811.08581, 2018.

[156] C. Electronics. “CANedge2: 2x CAN Bus Data Logger (SD + WiFi).”
(), [Online]. Available: https://www.csselectronics.com/products/can-
bus-data-logger-wifi-canedge2 (visited on 11/25/2021).

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 37

[157] M. Zago, S. Longari, A. Tricarico, et al., ReCAN Source - Reverse
engineering of Controller Area Networks, version DOI, Jan. 2020.
[Online]. Available: https://github.com/Cyberdefence- Lab- Murcia/
ReCAN.

[158] M. D. Pesé, D. Chen, A. Campos, A. Ying, T. Stacer, and K. G.
Shin, “DETROIT: Data Collection, Translation and Sharing for Rapid
Vehicular App Development,” in 19th Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON
’22, IEEE, 2022.

[159] Vector, “Extended Signal Multiplexing in DBC Databases,” Application
Note, 2019.

[160] CANEasy. “Multiplex Messages.” (), [Online]. Available: https : / /
www.caneasy.de/caneasyhelp/multiplex-botschaften.htm (visited on
12/22/2021).

[161] C. T. Barba, M. A. Mateos, P. R. Soto, A. M. Mezher, and M. A. Igartua,
“Smart city for VANETs using warning messages, traffic statistics and
intelligent traffic lights,” in 2012 IEEE intelligent vehicles symposium,
IEEE, 2012, pp. 902–907.

[162] D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, “A Survey on Platoon-
Based Vehicular Cyber-Physical Systems,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 1, pp. 263–284, 2016.

[163] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on intelligent vehicles, vol. 1, no. 1, pp. 33–55,
2016.

[164] A. Faisal, M. Kamruzzaman, T. Yigitcanlar, and G. Currie, “Understand-
ing autonomous vehicles,” Journal of transport and land use, vol. 12,
no. 1, pp. 45–72, 2019.

[165] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development of
autonomous car—Part II: A case study on the implementation of an
autonomous driving system based on distributed architecture,” IEEE
Transactions on Industrial Electronics, vol. 62, no. 8, pp. 5119–5132,
2015.

[166] K. Kirkpatrick, “Still waiting for self-driving cars,” Communications
of the ACM, vol. 65, no. 4, pp. 12–14, 2022.

[167] Thales. “7 benefits of autonomous cars.” (), [Online]. Available: https:
//www.thalesgroup.com/en/markets/digital-identity-and-security/iot/
magazine/7-benefits-autonomous-cars (visited on 01/17/2023).

[168] I. Yaqoob, L. U. Khan, S. A. Kazmi, M. Imran, N. Guizani, and
C. S. Hong, “Autonomous driving cars in smart cities: Recent advances,
requirements, and challenges,” IEEE Network, vol. 34, no. 1, pp. 174–
181, 2019.

[169] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[170] J. M. Marquez-Barja, D. Naudts, V. Maglogiannis, et al., “Designing a
5G architecture to overcome the challenges of the teleoperated transport
and logistics,” in IEEE 19th Annual Consumer Communications &
Networking Conference (CCNC), IEEE, 2022, pp. 264–267.

[171] S. Chen, J. Hu, Y. Shi, et al., “Vehicle-to-everything (V2X) services
supported by LTE-based systems and 5G,” IEEE Communications
Standards Magazine, vol. 1, no. 2, pp. 70–76, 2017.

[172] W. Duan, J. Gu, M. Wen, G. Zhang, Y. Ji, and S. Mumtaz, “Emerging
technologies for 5G-IoV networks: applications, trends and opportuni-
ties,” IEEE Network, vol. 34, no. 5, pp. 283–289, 2020.

[173] S. Gyawali, S. Xu, Y. Qian, and R. Q. Hu, “Challenges and solutions for
cellular based V2X communications,” IEEE Communications Surveys
& Tutorials, vol. 23, no. 1, pp. 222–255, 2020.

[174] R. Hussain, J. Lee, and S. Zeadally, “Trust in VANET: A survey of
current solutions and future research opportunities,” IEEE transactions
on intelligent transportation systems, vol. 22, no. 5, pp. 2553–2571,
2020.

[175] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
network, vol. 34, no. 3, pp. 134–142, 2019.

[176] Z. Zhang, Y. Xiao, Z. Ma, et al., “6G wireless networks: Vision,
requirements, architecture, and key technologies,” IEEE Vehicular
Technology Magazine, vol. 14, no. 3, pp. 28–41, 2019.

[177] D. C. Nguyen, M. Ding, P. N. Pathirana, et al., “6G Internet of Things:
A comprehensive survey,” IEEE Internet of Things Journal, 2021.

[178] F. Tang, Y. Kawamoto, N. Kato, and J. Liu, “Future intelligent and
secure vehicular network toward 6G: Machine-learning approaches,”
Proceedings of the IEEE, vol. 108, no. 2, pp. 292–307, 2019.

[179] Automotive Edge Computing Consortium. “CAN Bus Explained - A
Simple Intro (2019).” (), [Online]. Available: https://aecc.org/6g-for-
automotive- how- can- we- plan- when- we- are- only- just- getting- to-
grips-with-5g/ (visited on 10/26/2022).

[180] E. C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, et al., “6G: The
next frontier: From holographic messaging to artificial intelligence
using subterahertz and visible light communication,” IEEE Vehicular
Technology Magazine, vol. 14, no. 3, pp. 42–50, 2019.

[181] B. Kraemer, “Automotive ethernet,” IEEE Communications Magazine,
vol. 54, no. 12, pp. 4–4, 2016.

Alessio Buscemi received his Ph.D. from the Faculty
of Science, Technology and Medicine at the Univer-
sity of Luxembourg in March 2022. His Postdoctoral
research at Secan-Lab focuses on CAN Bus Reverse
Engineering and Time Sensitive Networking for
Automotive Ethernet.

Ion Turcanu is senior researcher and group leader of
the Edge Computing & Networks (EDGE) group at
the Luxembourg Institute of Science and Technology
(LIST). Previously, he was postdoctoral researcher at
the Interdisciplinary Centre for Security, Reliability
and Trust (SnT), University of Luxembourg. He
received his B.Sc. and M.Sc. in Engineering in
Computer Science from University of Rome Sapienza
in 2011 and 2014 respectively. In 2018 he received
his Ph.D. degree in Information and Communications
Technologies from the same university. His research

focuses on next-generation cellular networks, multi-technology vehicular
networks, wireless and mobile networks, and intelligent transportation systems.

German Castignani holds an engineering degree
in Computer Science from the University of Buenos
Aires (FIUBA, Argentina, 2009) and a Ph.D. in
Computer Science from the Institut Mines-Telecom
Atlantique (IMT, France, 2012). Currently, he leads
the Digital Twin Innovation Centre at the Luxem-
bourg Institute of Science and Technology (LIST).
He is also Adjunct Professor at the HEC-Liège-
Luxembourg. His is a co-founder Motion-S, the first
spin-off of the Interdisciplinary Center for Security,
Reliability, and Trust (SnT) of the University of

Luxembourg, in the field of mobility data analytics. His research interests
include digital twins, vehicular technologies, connected and automated driving,
risk assessment, and predictive modelling for energy and mobility systems.

Andriy Panchenko is full professor and head of the
Chair for IT Security at Brandenburg University of
Technology, Germany. He holds a Ph.D. (Doctorate
in Engineering) degree with distinction from RWTH
Aachen University, for which he got several prizes.
Before, he was a Research Scientist (permanent
faculty) and deputy head of the SECAN-Lab within
the Computer Science and Communications Research
Unit (CSC/FSTC) and associated with the Interdis-
ciplinary Centre for Security Reliability and Trust
(SnT) at the University of Luxembourg. His research

interests include IT Security, Privacy Enhancing Technologies, and Machine
Learning for IT Security.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXX 2022 38

Thomas Engel is Full Professor for Computer
Networks and Telecommunications at the University
of Luxembourg. From 1987 to 1995 he studied
Physics and Computer Science at Saarland University,
Germany, where he graduated in 1992 and received
the title Dr. rer. nat. in 1996. Between 1996 and 2003,
as joint founder, he was a member of the board of
directors and vice-director of the Fraunhofer-guided
Institute for Telematics e.V. in Trier, Germany, co-
responsible for the scientific orientation and devel-
opment of the institute, definition, acquisition and

realization of all research projects, which were 70% industry-financed. Since
2002, he has taught and conducted research as a professor at the IST/University
of Luxembourg. His SECAN-Lab team deals with performance, privacy and
identity handling in Next Generation Networks.

As a member of the European Security Research Advisory Board (ESRAB)
of the European Commission in Brussels, he advised the Commission on the
structure, content and implementation of the FP7 Security Research Programme.
He was coordinator of three European projects, including the Integrated Project
u-2010 with 16 partners, about Next Generation Networks using IPv6. Prof. Dr.
Thomas Engel was appointed member of the Information and Communication
Security Panel ICS of NATO (2007-2011), and Civil High-Level Expert for
Electronic Communications (representing Europe) of NATO CEP/CCPC (2008-
2018). From 2009 to 2016 Thomas Engel was Vice- and Deputy-Director
of the first Interdisciplinary Center at the University of Luxembourg, named
Security, Reliability and Trust (SnT). In 2019 he has been recognized as "IPv6
Evangelist" and inducted into the New Internet IPv6 Hall of Fame.

Kang G. Shin is the Kevin & Nancy O’Connor
Professor of Computer Science in the Department
of Electrical Engineering and Computer Science,
The University of Michigan, Ann Arbor. His current
research focuses on QoS-sensitive computing and
networking as well as on embedded real-time and
cyber-physical systems.

He has supervised the completion of 91 PhDs,
and authored/coauthored close to 1,000 technical
articles, a textbook and about 60 patents or invention
disclosures, and received numerous awards, including

2019 Caspar Bowden Award for Outstanding Research in Privacy Enhancing
Technologies, and the Best Paper Awards from the 2011 ACM International
Conference on Mobile Computing and Networking (MobiCom’11), the 2011
IEEE International Conference on Autonomic Computing, the 2010 and
2000 USENIX Annual Technical Conferences, as well as the 2003 IEEE
Communications Society William R. Bennett Prize Paper Award and the 1987
Outstanding IEEE Transactions of Automatic Control Paper Award. He has also
received several institutional awards, including the Research Excellence Award
in 1989, Outstanding Achievement Award in 1999, Distinguished Faculty
Achievement Award in 2001, and Stephen Attwood Award in 2004 from The
University of Michigan (the highest honor bestowed to Michigan Engineering
faculty); a Distinguished Alumni Award of the College of Engineering, Seoul
National University in 2002; 2003 IEEE RTC Technical Achievement Award;
and 2006 Ho-Am Prize in Engineering (the highest honor bestowed to Korean-
origin engineers).

He has chaired Michigan Computer Science and Engineering Division for
3 years starting 1991, and also several major conferences, including 2009
ACM MobiCom, and 2005 ACM/USENIX MobiSys. He was a co-founder of
a couple of startups, licensed some of his technologies to industry, and served
as an Executive Advisor for Samsung Research.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3264928

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

