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Abstract— Modern connected vehicles are equipped with a large
number of sensors, which enable a wide range of services that
can improve overall traffic safety and efficiency. However, remote
access to connected vehicles also introduces new security issues
affecting both inter and intra-vehicle communications. In fact,
existing intra-vehicle communication systems, such as Controller
Area Network (CAN), lack security features, such as encryption
and secure authentication for Electronic Control Units (ECUs).
Instead, Original Equipment Manufacturers (OEMs) seek security
through obscurity by keeping secret the proprietary format with
which they encode the information. Recently, it has been shown
that the reuse of CAN frame IDs can be exploited to perform
CAN bus reverse engineering without physical access to the
vehicle, thus raising further security concerns in a connected
environment. This work investigates whether anonymizing the
frames of each newly released vehicle is sufficient to prevent
CAN bus reverse engineering based on frame ID matching. The
results show that, by adopting Machine Learning techniques,
anonymized CAN frames can still be fingerprinted and identified
in an unknown vehicle with an accuracy of up to 80 %.

Index Terms—Connected Vehicles Security, CAN Bus Reverse
Engineering, Machine Learning, Frame Identification

I. INTRODUCTION

In recent years, the digitalization of the automotive sector
and release of new technologies in the market have lead
to a dramatic growth in the number of Electronic Control
Units (ECUs) present inside vehicles. The data sent from these
components is a valuable source of information for researchers
and companies proposing solutions for connected vehicles,
such as fleet management and cloud services [1], [2]).

As of today, most of the data sent from these ECUs transit
on the Controller Area Network (CAN) bus, a message-based
protocol considered the de-facto world standard for in-vehicle
communications. CAN allows ECUs to send messages to each
other without a master node orchestrating the communication.
However, attention was brought to the lack of security of the
CAN bus, due to the fact that no encryption is put in place
[3]–[5]. In this regard, a variety of attacks have been presented
in literature [6], [7]. The magnitude of such threats will likely
be amplified by the increase of vehicle connectivity and the
subsequent augment of access points for attacks.

Despite the absence of security features, the data transiting
on the CAN bus is not easily interpretable. As a matter of
fact, each Original Equipment Manufacturer (OEM) encodes
the data with its own proprietary format, which is kept secret

from the general public. The only way to disclose information
regarding these formats is through reverse engineering, which
is traditionally performed by following a list of tedious manual
operations [8]. Recent works have focused on automating this
process to reduce the time and manual effort required [9]–[13].
The proposed solutions are mostly based on correlating the
CAN data with external sensors and involve precise actions to
be performed by a trained operator during data collection.

In one of our recent studies we unveiled that the IDs of CAN
frames sent by ECUs can be exploited to carry out reverse
engineering in a highly automated way. The main reason is that
a limited number of Tier-1 suppliers provide the majority of
ECUs to car manufacturers worldwide. As a consequence, the
same ECU can be found in the electronic system of multiple
vehicle models, which send the same frames using the same
frame IDs. This characteristic can be exploited by matching
the frame of a vehicle to reverse engineer with frames of
known vehicles sharing the same frame ID. Differently from
related work, this approach is event-agnostic, i.e. the data
can be decoded without knowing the events occurred at data
collection time. By using this method, an attacker with remote
access to the CAN bus of a connected vehicle can perform
reverse engineer and inject an attack without physical access
nor prior knowledge about the target vehicle.

OEMs seem unwilling to bring core modifications to the
CAN protocol (i.e., by adding encryption) as it would inevitably
bring massive disruptions in the supply chains. One potential
solution to protect against frame matching based reverse
engineering approaches and improve the security of the CAN
bus, while meeting the necessities of the OEMs, is to avoid
the reuse of frame IDs for newly released vehicle models.

In this work, we investigate whether the abandonment of the
frame ID reuse practice is sufficient to completely anonymize
the frames, thus nullifying the benefit of a reverse engineering
approach based on frame matching. In particular, we study
the possibility of performing matching on anonymized frames
by exploiting other properties of the frames. If confirmed, the
implication would be that frame-matching based algorithms
can still be used to perform CAN bus reverse engineering
despite the ID anonymization with minimal extra effort. This
would further corroborate the view that OEMs must improve
the CAN bus security by applying substantial modifications
to the protocol. To validate this thesis, we propose a frame
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Figure 1. Structure of a CAN frame

deanonymization algorithm, which makes use of Machine
Learning (ML) models to fingerprint frames based on their
characteristics and dynamic behaviour. The ML models can
then recognize the frames in a new vehicle to reverse engineer
based on previously acquired knowledge.

The contribution of this work can be summarized as follows:
• We investigate the benefits of allocating a complete new

set of IDs to each newly released vehicle model.
• We present and evaluate a new ML-based algorithm,

whose goal is to deanynonymize frames. This algorithm
works under Open Set Recognition (OSR) assumptions.

• We discuss the implications of such a method in the scope
of CAN bus security.

II. BACKGROUND AND RELATED WORK

The communication on the CAN bus relies on messages, or
frames. The frames do not contain any information regarding
the sender nor the receiver ECU. A CAN frame is composed
of a number of fields, as shown in Figure 1. This work focuses
on three of them: (i) Identifier (ID) – uniquely represents the
frame and assigns its priority, (ii) Data Length Code (DLC)
– reports the payload length expressed as an integer between
0–8 Byte, and (iii) Payload – contains the actual information
carried by the frame.

ECUs send one or more CAN frames periodically. In absence
of collisions, these frames are received by all the ECUs
connected to the bus. While an ECU can receive or send
frames with different IDs, all frames associated with the same
ID are sent by the same ECU. Due to the lack of a master node
supervising the communication on the bus, multiple messages
can be sent simultaneously by different ECUs, thus generating
a collision. When a collision occurs, higher priority frames
(defined by their IDs) override lower priority frames, which
then have to be re-transmitted.

CAN bus reverse engineering is the process of finding the
boundaries of the signals within a frame payload, known
as tokenization, and decode their format (e.g. scale factor
and offset) and their semantic meaning (i.e. what vehicle
function they encapsulate), known as translation. In the manual
approach, the reverse engineering is performed by a human
operator who physically connects and disconnects ECUs and
detects changes in the CAN traffic [8]. Some signals can
also be retrieved by injecting diagnostic messages through the
OBD-II port to generate a response from the CAN bus.

In automated reverse engineering, tokenization is mostly
achieved by analyzing the flipping of the bits composing the
frames over time [10], [14]. After tokenization, typically, the
tokens are compared with GPS/IMU data, which offer a ground
truth about the current status of the vehicle at driving time,
to find correlations [11]. The injection of specific diagnostic
messages and the analysis of subsequent responses from the
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Figure 2. Pipeline of the proposed solution.

CAN bus is often automated too. The translation, or part of
it, can be achieved through ML-based classification [9], [12],
[13]. In this approach, an ML classifier is trained to recognize
the characteristics (or features) of each signal among CAN
traces from known vehicles, so that it can later exploit this
knowledge on an unknown vehicle.

By analyzing a large dataset containing CAN traces obtained
from 427 distinct vehicle models, we noticed that OEMs do
not change the frame IDs when mounting the same ECU on
multiple vehicle models. Assuming a decoded set of frames
is available (i.e., via manual reverse engineering), this can be
exploited to decode unknown CAN traces by simply matching
the unknown frame IDs with the ones from the decoded dataset.
One way to prevent this is to anonymize the frame IDs for
each newly released vehicle model. In this work, we show
that it is still possible to fingerprint and identify anonymized
frames with high accuracy, hence facilitating the automated
reverse engineering process based on frame matching.

III. FINGERPRINTING ANONYMIZED CAN FRAMES

In this work, we assume that frame IDs are anonymized,
i.e., same ECU model manufactured by the same OEM and
installed in any two different vehicle models use different
frame IDs for frames carrying the same vehicle functions. In
particular, we make two fundamental assumptions:

1) Following the standard CAN protocol, the new ID
associated to a frame should uniquely identify that frame.

2) The attribution of new IDs operated by the OEM should
not be random, but rather preserve the frames priority. This
assumption is important because lower-priority frames
have more chances to be overwritten by higher-priority
frames, when sent on the CAN bus simultaneously.

Hereafter, we present a tool to deanonymize frames which
are anonymized following the aforementioned assumptions.
The pipeline of this method is shown in Figure 2. The tool
firstly divides the CAN trace collected from the vehicle to
reverse engineer into n sub-traces, where n corresponds to the
amount of unique IDs. Every sub-trace contains the payload and



DLC of the frames with the same ID, following the temporal
order in which they appear in the trace. Then, from each
sub-trace we extract six features described as follows:

• Payload Length – it corresponds to the number of data
payload bytes, as reported in the DLC field.

• Mean Sending Frequency – it is the mean frames sending
frequency, as recorded by the CAN dongle.

• Standard Deviation of Sending Frequency – it is the
standard deviation of the frames sending frequency, as
recorded by the CAN dongle. The sending frequency is
influenced by the precision of the internal clock of the
sending ECU. As demonstrated by Cho and Shin [15],
this property can be used to fingerprint the sending ECUs.

• Percentage of Active Bits – it corresponds to the
percentage of bits that flip at least once among the total
number of bits in the frame payload throughout the trace.
A bit is said to flip, when its value changes from 0 to 1
or vice versa.

• Mean Bit Flip Rate – it is the mean flip rate of the
bits in the frame. Assuming a sub-trace composed by f
consecutive frames, the Bit Flip Count (BFC) of a bit b
in the payload corresponds to the total number of times
that the bit b flips. The bit flip rate is then calculated as
BFC/(f − 1) [10].

• Frame Priority – the frames within a trace are divided
into quartiles based on their priority, which is given by
their frame ID.

The trace splitting and features extraction process are referred
in Figure 2 (step 1).

Once a sample is generated for every sub-trace in the
described manner, the algorithm splits the set of samples into
two distinct subsets according to their length (extracted from
the DLC) (see step 2, Figure 2). The first subset contains
all frames whose payload is 8 Byte while the other includes
all frames whose payload is shorter than 8 Byte. We refer to
frames in the former set as long frames and to the frames in
the latter as short frames.

From a preliminary analysis of a dataset of 427 traces, each
collected from a different vehicle model, we discovered that as
much as 70.5 % of frames are long, while 29.5 % are short. The
reason behind this division is that the feature Payload Length,
while constituting a helpful discriminant for fingerprinting the
short frames, is ineffective for the long frames. Therefore, this
feature is removed from the set of long frames.

Each of the two sets of samples is given in input to an ML
model, specifically trained on samples (see step 3, Figure 2)
of the same kind (i.e., from long or short frames). This model
is trained exclusively on samples from the same industrial
group/alliance of the current vehicle to reverse engineer. The
underlying rationale is that vehicles are more likely to have
more frames in common with models from the same industrial
group. Preliminary tests highlight that training specifically a
classifier for each industrial group rather than on all samples
leads to lower amount of misclassified samples, due to the
reduced variance. Finally, all the samples are deanonymized
(see step 4, Figure 2).

Table I
EVALUATION SET STATISTICS

OEM
group

n.
vehicle
traces

n.
unique
frames

mean
n. frames

per vehicle

long /
short

frames
(%)

A 4 65 32.75 61.1 / 39.9
B 5 87 45.4 58.6 / 41.4
C 6 119 57.5 47.0 / 53.0
D 6 193 52.5 88.9 / 11.1
E 10 164 53.6 95.0 / 5.0
F 14 289 47.1 99.7 / 0.3
G 24 190 33.5 82.3 / 17.7
H 25 335 73.28 86.1 / 13.9
I 25 323 71.2 77.1 / 22.9
J 25 293 68.7 49.9 / 50.1
K 32 299 43.9 96.2 / 3.8
L 33 491 34.5 71.4 / 28.6
M 60 548 40.4 45.8 / 54.2
N 76 502 40.2 56.0 / 44
O 82 630 55.2 83.3 / 16.7

IV. PERFORMANCE EVALUATION

Our algorithm is validated on a set of 10 s CAN traces
obtained from 427 distinct vehicle models from 28 different
automotive brands belonging to 15 different industrial groups
from EU, USA, Japan, India and South Korea. Each of these
traces was collected by a partner company with a PCAN-USB
FD from a parked vehicle, with no action performed by a
human operator. The vehicles in our evaluation set contain a
total of 33 034 CAN frame IDs, from which we extract an
equal number of samples. Table I summarizes other relevant
information for all (anonymized) industrial groups in the
evaluation set. For each industrial group, the table reports:

• The number of vehicle traces (n. vehicle traces).
• The number of unique frames that are found across all

vehicle models (n. unique frames), as identified by their
ID. The table highlights that a bigger and more variegated
set of vehicle models corresponds to an increase in the
total number of unique frames.

• The mean number of unique frames per vehicle (mean n.
frames per vehicle). It depends on the level of digitaliza-
tion of the vehicles produced by the manufacturer, which
is usually correlated to the market segment (i.e. high-end
vehicle models have more electronic components).

• The percentage of long and short frames on the total
number of unique frames (long / short frames).

A. Performance Metrics

In our evaluation we adopt a leave-one-out-cross-validation
approach. Namely, each vehicle in the dataset is iteratively
considered as the vehicle to reverse engineer and its ground
truth is discarded. The classifiers are then trained on the rest
of the dataset.

Our classification task is an Open Set Recognition (OSR)
problem. In an OSR problem the knowledge of the world is
incomplete at training time [16]. As opposed to the standard
closed-world classification scenario, the ML models do not



have only to classify samples from known classes, but also to
adequately reject samples belonging to unknown classes. As
a matter of fact, apart from the ECUs mounted in previous
vehicle models, we expect newly released vehicle models to
be also equipped with last generation components, which will
send frames unseen until then. For this reason, the trace of a
new vehicle to reverse engineer may contain frames that the
ML model has never been trained on.

In the OSR scenario the classes are typically divided into
four sets: Known Known Class (KKC), Known Unknown Class
(KUC), Unknown Known Class (UKC), Unknown Unknown
Class (UUC). KKC is the set of classes for whom a distinct
label is available. In our case, it is the set of labels (the frame
IDs) associated with the frames on which the model was trained
on. On the contrary, UUC is the set of the classes on which
the classifier has never been trained on and for whom no side
semantic information is available at training time. KUC and
UKC are out of the scope of this work.

Being an OSR, we cannot evaluate our tool with metrics
commonly accepted for standard ML close-world problems,
such as the accuracy and F1-Score. New accuracy metrics
for OSR tasks are firstly presented by Júnior et al. [17] and
respectively reported in Equation (1) and Equation (2), namely
Accuracy for KKC (AKS) and Accuracy for UUC (AUS):

AKS =

∑C
i=1(TPi + TNi)∑C

i=1(TPi + TNi + FPi + FNi)
(1)

AUS =
TU

TU + FU
(2)

In Equation (1), TPi, TNi, FPi, FNi correspond respectively
to the number of true positives, true negatives, false positives,
and false negatives for the i-th KKC i ∈ {1, ..., C}, where
C corresponds to the cardinality of KKC. Note that FNi

includes the samples of KKC wrongly classified as unknowns.
In Equation (2), true unknowns TU correspond to the samples
of UUC correctly classified as unknown, while false unknowns
FU correspond to the samples of UUC wrongly classified with
one of the KKC labels.

B. Classifiers

OSR problems are mainly addressed in two ways: (i) by
enabling a common ML classifier to reject unknown samples,
and (ii) by employing a classifier inherently designed to deal
with UUC.

Regarding (i), we adapt a Random Forest (RF) [18] classifier
and a Fully Connected Neural Network (FCNN)[19] to reject
samples whose confidence score for the predicted label is below
a certain rejection threshold, in the way described in [16]. We
choose RF due to its robustness to outliers and the consistent
handling of unbalanced datasets, which is particularly relevant
in our case. After a tuning on the RF, we discovered that
the optimal performance is obtained with around 200 tree
estimators. Regarding FCNN, we choose it for its robustness
to outliers and the overall superior performance of neural
networks compared to traditional ML classifiers documented

in literature [19]. After an extensive tuning on the number of
layers and neurons for each layer, we found out that having
more than three hidden layers with more than 1024 neurons
each (and ReLu activation function) does not improve the
overall performance of the model.

For what concerns (ii), we have reviewed the main inherently-
Open Set (OS) classifiers in literature. The vast majority of
related works specifically addresses computer vision tasks –
as OSR is especially relevant for this field – and, therefore,
the new classifiers are designed accordingly. In this regard, a
particular effort is put into the adaptation or design of new
Convolutional Neural Network (CNN) architectures [16], [20].
However, since our data is characterized by a maximum of
six features, as opposed to the high-dimensional data typically
processed in computer vision tasks, the majority of the methods
presented in literature are unsuitable for our task.

For this reason, we selected two algorithms, PI-SVM [21]
and Extreme Value Machine (EVM) [22], which can process
input with different spatial properties without the need of
data dimensionality transformations. PI-SVM integrates the
notions of data distribution from Extreme Value Theory (EVT)
[23] into the widely known Support Vector Machine (SVM)
classifier. EVM is a brand new algorithm, which also exploits
the EVT theory about data distribution to group samples in
consistent areas of the space.

C. Comparison between classifiers

We first analyze the results obtained by RF, FCNN, EVM,
and PI-SVM to assess which classifier provides the best
performance overall. After testing PI-SVM and EVM based
on the source code released by the authors and the settings
suggested in the respective papers [21], [22], we performed
an extensive tuning of the hyperparameters to optimize their
performance. The tuning revealed that EVM and PI-SVM score
AKS and AUS lower than 20 %. Given their poor performance,
we further show only the results obtained with RF and FCNN.

Figure 3 shows the average AKS and AUS, along with
95 % confidence intervals, obtained testing RF and FCNN on
the evaluation dataset. The figure highlights that AKS and
AUS can vary greatly according to the choice of the rejection
threshold. As expected, an increase of the rejection threshold
corresponds to a decrease of the AKS and an increase of the
AUS. As a matter of fact, the higher the threshold, the more
samples are rejected. This causes an increase of the samples
in KKC wrongly rejected (hence, the worsening of the AKS),
and a decrease of the samples in UUC wrongly labeled as
known (hence, the improvement of the AUS).

RF performs equal or better than all the other classifiers
on both samples from the short and long frames subsets on
all considered metrics and datasets. RF and FCNN achieve a
similar AUS for what concerns samples from short frames. It
is interesting to notice that, for high values of the rejection
threshold, FCNN achieves a higher AKS compared to RF when
considering samples from both the short and the long frames.

It has been shown in [24] that the probabilistic output
provided by most classifiers is skewed towards the extreme
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Figure 3. Comparison of the performance achieved by RF and FCNN for
different rejection thresholds.
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Figure 4. Performance of RF with a rejection threshold of 0.2 achieved on
the vehicles of each OEM group.

values (0 and 1) and, thus, does not enable an understanding
of the true probability of the prediction correctness. It follows
that the predictions probabilities outputted by the selected
classifiers do not correspond to the actual probability of
a sample belonging to a determined class. Hence, since
different classifiers calculate the probabilistic scores according
to different logic, the setting of a certain rejection threshold
can have consistently different impact on AKS and AUS.

D. Result Analysis

Having designated RF as ultimate classifier for the task,
based on the superior classification accuracy compared to the
other algorithms, we further investigate its performance. In
particular, we analyze the results obtained on the different
industrial groups/alliances. Figure 4 illustrates the average
AKS and AUS, with 95 % confidence intervals, obtained by
RF with a rejection threshold of 0.2 on all vehicles for each
industrial group/alliance. The results show a high variance
in the average performance scored by the models trained on
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Figure 5. Comparison of the mean AKS and AUS obtained by RF on active
and inactive samples.

vehicles from different industrial groups for all considered
metrics. We have not found any clear correlation between the
classification accuracy and any other characteristic related to
the composition of the sample sets for each industrial group
reported in Table I.

Finally, we investigate the importance of the features
Percentage of Active Bits and Mean Bit Rate. As mentioned in
Section IV, the traces in the dataset were collected on parked
vehicles. For this reason, numerous signals are never triggered
and their bits never flip. Such signals are, for instance, all those
related to the steering wheel or the vehicle speed. Following
an analysis of the dataset, we discovered that, due to this
phenomenon, the traces have 53.8 % of frames whose bits in
the payload never flip. We refer to these frames as inactive.
In contrast, the frames in which at least one bit flips during
data collection are called active. The consequence of having
inactive frames is that both the Percentage of Active Bits and
Mean Bit Rate of the samples extracted from them are 0, thus
making these two features irrelevant for their fingerprinting.
By extension, we refer to the samples generated from the
active and inactive frames as, respectively, active and inactive
samples.

In this scope, we investigate the impact that inactive samples
have on the overall classification performance. Figure 5
compares the mean AKS and AUS obtained by the classifier
on active and inactive samples according to different rejection
threshold. The results show that RF achieves higher AKS
and AUS on active samples compared to inactive samples.
For instance, with a no-rejection threshold (i.e. equal to 0),
the classifier achieves an AKS of 79.8 % on active samples
extracted from the short frames set, compared to 61.7 %
scored on inactive samples from the same set, thus marking



a difference of 18.1 % in the performance. Still assuming no
threshold, an even larger gap of almost 25 % remarks the
difference in the performance achieved by the classifier on
active samples compared to inactive samples extracted from
the long frames set.

The presented results show that the features Percentage of
Active Bits and Mean Bit Rate impact greatly on the classifi-
cation performance. This fact suggests that the classification
can be sensitively more accurate if the classifier is trained on
samples from traces collected on vehicles that are driven.

V. CONCLUSION

In this work, we study whether anonymizing the CAN frame
IDs makes frame matching based CAN bus reverse engineering
methods ineffective, thus preventing vehicle-agnostic remote
attacks on CAN bus. We test the efficacy of this approach
by fingerprinting frames whose IDs are anonymized. In this
scope, we train ML classifiers to recognize frames based on
six features extracted exploiting DLC, bit flipping, sending
frequency and frame priority. We evaluate our fingerprinting
method on 33 034 samples extracted from traces collected on
427 different vehicle models.

The results show that an RF classifier can recognize frames
with a 8 Byte-long payload and frames with a shorter payload
with a mean AKS up to 44.1 % and 68.7 % respectively.
When considering samples extracted from frames with at
least one flipping bit, a superior AKS up to 57.7 % and
79.8 % is achieved on samples extracted from long and short
payload frames respectively. The presented results highlight
that anonymizing the CAN frame IDs does not prevent reverse
engineering based on frame matching. This suggests that
connected vehicles are vulnerable to the remote decoding
of CAN data by potential adversaries who can then inject
attacks with minimal effort. In conclusion, to preserve better
the anonymity of the CAN data transiting in-vehicle networks,
substantial changes in the CAN encoding practices is necessary.

Future work includes research for new features able to
increase the fingerprinting performance. We also plan to look
for an effective defense against the fingerprinting of frames.
Such a solution will have to respect the assumptions made in
the paper, while keeping the CAN protocol unchanged to meet
the needs of the OEMs.
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