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Abstract—Current in-vehicle communication systems lack
security features, such as encryption and secure authentication.
The approach most commonly used by car manufacturers is to
achieve security through obscurity – keep the proprietary format
used to encode the information secret. However, it is still possible
to decode this information via reverse engineering. Existing
reverse engineering methods typically require physical access to
the vehicle and are time consuming. In this paper, we present
a Machine Learning-based method that performs automated
Controller Area Network (CAN) bus reverse engineering while
requiring minimal time, hardware equipment, and potentially
no physical access to the vehicle. Our results demonstrate
high accuracy in identifying critical vehicle functions just from
analysing raw traces of CAN data.

Index Terms—CAN Bus, Automated Reverse Engineering, In-
Vehicle Networks, Signal Identification, Machine Learning

I. INTRODUCTION

The evolution of automotive networks has mainly been
shaped by the very stringent communication requirements of
Electronic Control Units (ECUs) – embedded devices that
control different parts of a vehicle’s electronic system. This
led to the development of dedicated network architectures
and protocols able to meet these very specific requirements,
such as Controller Area Network (CAN), Local Interconnect
Network (LIN), Media Oriented Systems Transport (MOST),
and FlexRay [1]. Of these, CAN is the most popular and is
considered the de facto standard for in-vehicle communication
[2]. Communication on CAN bus inside today’s automotive
networks is typically not encrypted, and there is no protocol
for secure ECU authentication. When an ECU sends a message
or frame on the bus, it is received by all the ECUs connected
to the same bus. An adversary capable of compromising any of
the ECUs attached to the CAN bus can send fake messages to
any other ECU in the network, hindering its correct operation.

The main reason for this lack of security mechanisms
is that automotive networks used to be isolated from the
outside world. This however has changed with the evolution
of connected vehicles, which, on the one hand, enables new
safety applications based on Vehicle-to-Everything (V2X)
communications, while, on the other hand, exposing the in-
vehicle network to external threats via remote access. The
most prominent example is the attack performed by Miller and
Valasek [3] in 2015, when the authors managed to drive a Jeep
Cherokee off the road by remotely injecting messages from the
Telematic Control Unit and In-Vehicle Infotainment systems.

Fortunately, an adversary gaining access to the in-vehicle
network cannot directly perform a targeted attack. In fact,
despite its lack of encryption and authentication protocols, the
communication on the CAN bus is typically encoded according
to a specific format designed by the car manufacturer. This
format is proprietary to the manufacturer and the only way
to disclose it is through reverse engineering. Manual reverse
engineering [4] can only be performed with physical access to
the vehicle, is typically time consuming, and does not scale.
In recent years, several tools that achieve varying degrees of
automation of the reverse engineering process, thus cutting
the time and effort required, have been presented [5]–[9]. The
reason the research community is interested in speeding up the
reverse engineering process is both to demonstrate its feasibility
from an attacker’s perspective, and to allow researchers and car
manufacturers discover potential vulnerabilities faster in order
to design better defence mechanisms. However, these methods
follow an “intrusive” approach in order to collect data from
the CAN bus – they require physical access to the vehicle,
installation of hardware, and request of diagnostic messages
from the OBD-II port.

In this paper, we present a minimal approach towards fully-
automated CAN reverse engineering and propose Critical
Signals Identifier (CSI), a method that requires as input only the
raw CAN data of the vehicle, collected by passively reading the
CAN bus over a few seconds of driving. The proposed solution
is validated on a dataset containing real logs of CAN data. The
main novelties introduced by CSI are the division of signals
into categories based on their length, the use of categorical
features to represent CAN signals, and the employment of
Integer Linear Programming (ILP) to refine the predictions
made by the Machine Learning (ML) models. The proposed
method represents a useful tool for researchers and companies
that work on CAN bus security or exploit this data to provide
manufacturer-independent aftermarket solutions, as it requires
minimal time, equipment and manual effort compared to other
state-of-the-art solutions.

II. BACKGROUND AND RELATED WORK

A standard CAN data frame is composed of several fields, as
illustrated in Figure 1. Among these, the two most relevant for
this study are the CAN identifier and data fields. The former
uniquely identifies a CAN frame and indicates its priority,
while the latter contains one or more signals, i.e., the actual



Figure 1. Standard CAN frame structure. The numbers represent the bits
dedicated to each field.

data to be carried. A signal corresponds to a chunk of data
that encodes a vehicle function. The length of a signal is fixed,
as well as its position within the payload.

The goal of reverse engineering is to unequivocally locate
the position of the signals inside the frames, identify their
meaning, and interpret their values. In the manual approach, this
is achieved by generating events that trigger ECU responses in
order to spot differences with respect to the CAN normal traffic.
This is often achieved by collecting diagnostic information
when injecting messages with special IDs, called PIDs, in the
OBD-II interface. OBD-II is a port present in all vehicles,
whose main use is the check of emissions-related parameters.

The automated reverse engineering approach correlates data
recorded on the CAN bus to ground truth provided by GPS,
Inertial Measurement Unit (IMU) sensors installed in the
vehicle, and/or the use of OBD-II PIDs. In addition, almost all
algorithms, and especially those based on ML, make use of
data from previously manually reverse engineered vehicles. The
pipeline of these methods is typically divided into two main
phases: (i) tokenization, which is the process of segmenting
CAN frames payload into tokens, and (ii) translation – the
process of decoding the content of the tokens, such as their
meaning (i.e., in terms of telemetry or vehicle function). Note
that a token, also described as a signal whose function and
format have yet to be identified, is represented by its boundaries
(start/end bit of the frame) and the order of the bytes in which it
is located, called endianness. In this work, we focus mainly on
the translation phase and assume the tokenization has already
been performed (e.g., by using the algorithm proposed in [6]).

Jaynes et al. [5] propose a ML-based approach to identify
the sender ECUs of CAN frames by analyzing the payload of
the frames themselves. The authors train several classifiers to
identify the content of messages concerned with five distinct
car functions. The samples given as input to the classifiers are
the data contained in chunks of one byte parsed to numerical
values, obtained from the payload itself. The models have been
tested on nine distinct car models, giving a top F-Score of
84.4 % with a Random Forests (RF) classifier.

Marchetti and Stabili [6] propose READ, a tokenization
algorithm based on the comparison of the bit flip rates of
consecutive bits within a CAN frame over a given period.
This algorithm labels the signals according to three categories:
physical, counters and cyclic redundancy check. READ was
validated on a synthetic trace and 25 traces related to a total of
14 hours of driving sessions. On such a test set, the algorithm
was able to correctly identify the type and boundaries of nearly
200 signals with precision greater than 90 %. However, this
work focuses entirely on the tokenization phase and does not
decode the signals themselves.

Verma et al. [7] introduce ACTT, which tokenizes and

translates the signals matching the information obtained by
injecting diagnostic messages through the OBD-II port. Like
READ [6], ACTT identifies only the signals whose bits flip
during the data collection. Testing ACTT on a single vehicle,
the authors found that ≈ 70% of its CAN traffic corresponds
to constant bits. They could correctly identify the meaning of
16.8 % of the total bits in the trace.

Pesé et al. [9] propose LibreCAN, a tool that performs
both tokenization and translation phases. The tokenization is
achieved through a modified version of READ [6], able to
identify a wider set of token labels according to their type. The
translation is achieved by cross-correlating the CAN raw trace
with data collected from OBD-II PIDs and IMU data collected
with a phone aligned to the vehicle. LibreCAN managed to
fully decode 24 signals for each of the four considered vehicles
from the same car manufacturer with a top precision and recall
of respectively 82.6 % and 44.1 %. However, LibreCAN makes
use of injected diagnostic messages and IMU data, obtained
with a tool expressly installed in the vehicle. Also, the tool
was tested on car models from the same manufacturer, thus it
is not clear whether this algorithm would perform as well on
vehicle models from a different car manufacturer.

Unlike most of these works, this paper proposes an automated
non-intrusive CAN reverse engineering approach that requires
only raw CAN data as input. In particular, our approach does
not require any additional data to be collected, such as from
OBD-II PIDs or IMU data, which allows our solution to be
potentially used on remotely collected CAN data.

III. CRITICAL SIGNALS IDENTIFIER

The goal of CSI is to identify a set of signals, referred to as
foreground set, among a wider set of signals, the background
set, from a trace of raw CAN data. The foreground set is
composed of 10 signals, each representing a vehicle function,
that we deem of primary relevance in a vehicle and critical for
its safe operation. These functions are: engine speed, vehicle
speed, wheel speeds, steering wheel angle, steering wheel
side, throttle pedal position, battery voltage, engine coolant
temperature, engine oil temperature, and odometer.

Figure 2 illustrates the entire pipeline of our proposed
solution. The CSI classification task is performed by ML
models, trained on known data related to previously reverse
engineered vehicles, which are applied to a trace of raw CAN
data extracted from the vehicle we want to reverse engineer.
It should be noted that, in this work, we assume the raw data
is already divided into tokens (e.g., by applying the READ
algorithm [6] or its modified version in [9]) before running the
CSI algorithm.

A. Signal Categories

We assume signals representing the same vehicle functions
have identical or similar length across vehicle models, due to
the intrinsic amount of information they need to encapsulate.
To validate this assumption, we conducted an analysis on a set
of Database CAN (DBC) files related to 477 unique vehicle
models provided by Xee [10]. A DBC file contains fundamental
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Figure 2. Pipeline of CSI.

information regarding the reverse-engineered CAN signals of
a certain vehicle model. We discovered that about half of the
signals related to the same telemetry have exactly the same
length in all the vehicles. In addition, all considered vehicle
functions but two have a Coefficient of Variation (CV) related
to their length less than 0.5. CV is a normalized measure of
the dispersion of frequency distribution, computed as standard
deviation to mean ratio (σµ ). CV < 1 indicates a low variance,
while CV ≥ 1 indicates a high variance.

As a result, we decided to divide the signals into four groups,
according to their length: G1 (1–4 bits), G2 (5–10 bits), G3 (11–
17 bits), and G4 (≥ 18 bits). We tackle the reverse engineering
process as four different classification tasks. The goal is to
design features that better fit each group and build a more
accurate model for the classification task.

B. Feature Extraction

The aim of a supervised ML classifier in the scope of CAN
bus signal translation is to identify for each token the vehicle
function that it represents. The classifier is trained to associate
a sample representing each token with its vehicle function.
Each sample is a combination of feature values calculated for a
token. A feature describes a unique characteristic of a vehicle
function. The features should make signals related to the same
function recognizable across different vehicle models while
differentiating them from other signals.

The main difficulty in finding good features for CAN signals
is that most of them are directly or indirectly highly influenced
by environmental factors, such as road/traffic conditions and
the driving style. The risk is of identifying features that are
not related to the intrinsic nature of the signal but, instead, are
strongly influenced by the environmental factors. In related
work, sensors such as GPS and IMU provide some useful
ground truth about the driving context. For instance, by cross-
correlating the speed pattern recorded by a GPS dongle with a
set of tokens, it is possible to identify the signals related to
the vehicle speed. In our use-case scenario, we do not have
access to such ground data to match the CAN raw trace with.

Therefore, we cannot make the signals comparable by scaling
their values, given the absence of a reference truth.

To identify the set of features, we initially tried to exploit
the correlation among signals across three domains: frame
priority (inferred from the CAN ID), frame sending frequency,
and payload. However, our preliminary analysis of the dataset
revealed that the first two domains do not present high enough
correlation values. For this reason, we focus only on the payload
carried by each signal. The numerical values carried by the
payload of each signal strongly depend on contextual factors
and do not constitute a good base for fingerprinting the vehicle
functions. For example, a model trained on traces related to
cars going at most at 30 km/h is unlikely to recognize the
vehicle speed in a trace from a car reaching 100 km/h.

To minimize the impact of these factors, we design features
that are categorical. These features describe either (i) the
presence or absence of a property (e.g., twinned or not), or
(ii) a categorization or ranking of the signals inside the same
trace with regard to a certain aspect (i.e., dynamicity rankings).
These features fit the vehicle functions independent of the
numerical values carried by the signals representing them.

We define a total of eight features, which require several
processing steps to be generated from the CAN raw trace:
• Number of Static Bits: Unless the vehicle is pushed to

its extreme performance with regard to a telemetry, some
bits of the signal carrying this telemetry will never flip.
The number of unchanging bits helps to identify signals
carrying these telemetries.

• Length: The length of the signal itself is used as a feature.
• Dynamicity Type: This feature categorizes the behaviour

of the signal in time. We define four signal types: status,
counter, physical or other.

• Short Signal Dynamicity Ranking: It is related to short
status signals. The feature ranks the dynamicity of the
signals from “Low” to “High” based on the bit flip rate
percentiles calculated taking into consideration signals of
the same group and dynamicity type found in the trace.

• Long Signal Dynamicity Ranking: Same as Short Signal
Dynamicity Ranking, but related to long physical signals.

• Twinned: Two or more signals within the same frame
are twinned if they display a similar bit flip rate.

• Stopping Dynamicity: We assume the vehicle to reverse
engineer is driven for a certain amount of time until it
stops. We identify the parts of the trace related to the two
phases of the driving session (driving and not driving) and
find the speed-related signals whose values decrease down
to the idle value. This feature encapsulates the temporal
order in which these signals reach their idle status.

• Idle Status: This feature captures the idle status of the
signals (i.e., their value), when the vehicle is not moving.

The samples of each group of signals are composed of a
subset of these features, as shown in Table I.

C. Classification

Once the samples are generated for each token according to
the features of each group, they are passed to an ML model



Table I
FEATURES FOR EACH GROUP OF SAMPLES.

Feature G1 G2 G3 G4

Number of Static Bits X X
Length X X
Short Signal Dynamicity Ranking X
Long Signal Dynamicity Ranking X X X
Dynamicity Type X X X X
Stopping Dynamicity X X
Idle Status X X
Twinned X

for the classification task, as shown in Figure 2. There are
four ML models, each trained on samples of one of the four
groups extracted from traces of previously reverse engineered
vehicles. Our analysis of the dataset revealed that very rarely
a CAN trace contains multiple instances of the same signal
across frames with different IDs. It is, indeed, in the interest
of manufacturers to avoid redundancy in a network which is
already constrained by its low bandwidth. As a consequence,
we can make some assumptions about the number of tokens
that can be labelled as a certain signal in a trace. We define this
number as the cardinality of the vehicle function. For example,
we can assume that in every vehicle there can be at most four
signals related to the wheel speeds. Therefore, the cardinality
of wheel speed is four.

To the best of our knowledge, no classifier can be set to
take into account the constraints during the prediction. Since
the number of samples per class is not known a priori, in case
of misclassification, a standard classifier would attribute the
same label to an arbitrary number of tokens.

To overcome this limitation, instead of performing determin-
istic predictions, we set the classifier to output a list of probable
labels/functions for each token. Subsequently, CSI converts
each function predicted for each token into a variable, and the
probability associated with it into a coefficient associated with
the variable. All the variables are inserted into a system of
inequalities, describing the constraints related to the cardinality
of the vehicle functions. Then, the system is solved as a ILP
problem, described as follows:

maximize
∑
t∈T

∑
f∈F

αt,fpt,f (1)

subject to:
∑
t∈T

pt,f ≤ cf ,∀f ∈ F (2)∑
f∈F

pt,f ≤ 1,∀t ∈ T (3)

0 ≤ αt,f ≤ 1 (4)
cf ≥ 1 integer (5)
pt,f ∈ {0, 1} (6)

where T represents the set of tokens, F is the set of vehicle
functions, αt,f indicates the probability that token t contains the
vehicle function f as predicted by the classifier, cf represents

Table II
CSI PERFORMANCE FOR DIFFERENT CLASSIFIERS COMPARED TO BASELINE.

Performance metric CSI Baseline
RF MLP SVM NB RF

Accuracy [%] 91.6 93.0 91.7 89.3 12.7
Balanced Accuracy [%] 73.0 80.0 72.4 63.4 12.8
F1-Score [%] 91.7 92.8 92.1 89.2 11.5
Balanced F1-Score [%] 74.1 79.9 74.4 59.9 11.4

the cardinality of the vehicle function f , and pt,f is a binary
function defined as:

pt,f =

1, if the vehicle function f is ultimately
assigned to token t

0, otherwise
(7)

The constraints described by Equation (2) ensure that at most
cf tokens get associated with a certain vehicle function f , while
Equation (3) ensures that each token is ultimately predicted to
contain with at most one known vehicle function.

IV. PERFORMANCE EVALUATION

To evaluate the performance of our proposed solution, we
used a set of 60 s-long CAN traces collected with a PCAN-USB
FD [11] dongle connected to the CAN bus of the following
vehicle models: Audi A3 2012, BMW X1 2015, Kia Sportage
2016, Mercedes A-Class 2018, Peugeot 307, 2008, Megane 4
2016, Volkswagen Golf 5 2009 and Volvo XC40 2018. The
ground truth for the content of these CAN traces was obtained
through manual reverse engineering. To obtain more samples
to train the classifiers better, each trace is divided in 10 smaller
traces of about 6 s each through windowing. A total of 2,302
signals were found in these 80 subtraces. The background set
is composed of signals related to 59 different vehicle functions.

For the classification task, we tested four of the most used
ML classifiers in the related work: Support Vector Machine
(SVM), Naive Bayes classifier (NB), Random Forests (RF), and
Multilayer Perceptron (MLP). To cross-validate CSI, we trained
iteratively each classifier on samples belonging to all but one
vehicles and used the samples of the remaining vehicle as a test
set. To optimize the performance of each classifier, we balanced
the training set with SMOTE [12], a well-known technique for
over-sampling the minority classes, and we extensively tuned
its hyperparameters.

The evaluations presented in the following refer to the
combined predictions achieved on the different test sets. We
compare the performance of CSI with the method proposed by
Jaynes et al. [5], which we refer to as Baseline. To the best
of our knowledge, this is the only related work that performs
automated reverse engineering based only on raw CAN data.
Table II shows the accuracy and F1-score achieved by CSI with
all the considered classifiers, as well as the results obtained
with the Baseline method. For the latter we show only the
results achieved using RF, the best performing classifier in [5].

The accuracy is defined as the number of correct predictions
divided by the number of total predictions made. The F1-
Score is defined as the harmonic mean between precision and
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Figure 3. Confusion matrix of the predictions performed by CSI with MLP.

recall. Due to the presence of the background set, consisting of
numerous signals, and to the fact that the foreground signals
are present in different number in different vehicles, the test
sets are imbalanced. As a consequence, the accuracy and F1-
Score are influenced by the number of elements in each class
given as input to the model. In this case, the results are heavily
conditioned by the performance on the background set, as its
number of samples is consistently higher than any other class.
For this reason, we also report the balanced (or weighted)
accuracy and F1-Score.

Our approach significantly outperforms the state-of-the-art
solution in all the considered metrics. The main reason for
the poor performance achieved by [5] is that the samples are
generated from all the bytes contained in the payload of a frame.
The authors do not consider the possibility that a CAN frame
can contain multiple signals. Therefore, the sample generation
is negatively affected by the presence of unrelated chunks of
payload that are associated to the signals.

Figure 3 illustrates the normalized confusion matrix, offering
a complete view of the predictions made for each class by CSI
with MLP, which is the best performing algorithm. The x-axis
represents the predicted labels, while the y-axis the actual labels.
The label “Other” corresponds to the background set. The main
diagonal shows the rate of correctly classified samples for each
class. Since the confusion matrix is normalized, the overall
accuracy is calculated as the mean of these rates. The other
slots report the rate of misclassification for each class (the rows
being the false negatives and the columns the false positives).

The difference in the performance achieved by CSI for
different signals can be explained by (i) the different quality
of fitting provided by the features for each vehicle function
and (ii) the presence of signals related to more or less similar
vehicle functions. For instance, the Engine Oil Temperature
is mostly misclassified with Engine Coolant Temperature and
vice versa. This indicates a high correlation between these two
vehicle functions, which leads to a higher difficulty in correctly
distinguishing them.

Our results show that CSI is able to identify with good
accuracy safety-relevant signals on a CAN bus among a wide
set of signals. The diverse set of tested vehicles argues in favour

of the universality of this method. Moreover, since CSI does
not require any manual intervention in the reverse engineering
process, the execution time of the algorithm is much faster
compared to other state-of-the-art approaches, such as [9].

V. CONCLUSION

In this paper we have presented CSI, an automated CAN
bus reverse engineering algorithm that only requires raw CAN
data as input. We validated the proposed solution on a dataset
of real CAN traces collected from eight driving vehicles. Our
solution is characterized by a minimal approach in terms of
employed hardware and execution time. Using a combination
of ML and ILP, CSI can automatically identify safety-relevant
vehicle functions with an accuracy up to 93 %.

Future work includes the design of an accurate tokenization
algorithm, which in this work was solely simulated. In addition,
our method identifies the signals without extracting the actual
value included in these signals. One potential improvement
could include a method to identify the parameters (e.g., scaling
factor) needed to extract the actual physical values. Finally,
new features can be designed to improve the classification
accuracy and extend the number of identified signals.
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