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On flow control and optimized back-off in
non-saturated CSMA
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Abstract—Medium Access Control (MAC) main functions
encompass contention for channel access, packet scheduling, error
control, and data integrity. Channel contention is a collective
function involving all stations in the network, while data integrity
pertains to data flows of each individual station. We propose a
design where contention related functions are separated from other
data management functions. The hinge connecting contention and
other data management functions is a flow control algorithm,
aiming at guaranteeing stability of contention queues and load
on the MAC channel. With reference to Carrier-Sense Multiple
Access (CSMA), we define an analytical model of contention
queues under non saturated traffic. An asymptotic analysis of the
model for large number of stations yields a closed form of the
optimal flow control rate. The insight gained from the model is
used to design an adaptive flow control algorithm that guarantees
throughput optimality for all values of the number of stations.

Index Terms—MAC protocol design, CSMA, non-saturated
traffic, throughput optimality, flow control, stability.

I. INTRODUCTION

Carrier-Sense Multiple Access (CSMA) has dominated the
stage of random multiple access techniques, boosted by the
impressive success of Wi-Fi networks, whose core Medium
Access Control (MAC) protocol algorithm is the so called
CSMA/CA. The CSMA/CA algorithm is the foundation of
essentially all variants of IEEE 802.11, from high speed local
wireless networks (IEEE 802.11b/a/g/n/ac, partly also IEEE
802.11ax), to vehicular (IEEE 802.11p/bd) and sensor networks
(IEEE 802.11ah).

On the theoretical side, the landmark works by Tobagi
and Kleinrock [1]–[4] defined basic models for performance
evaluation, investigated stability issues, and gave fundamental
insight into the properties of CSMA. The seminal paper of
Bianchi [5] opened the way to the analysis of CSMA/CA, the
variant used in Wi-Fi MAC layer Distributed Coordination
Function (DCF). This model applies under saturated traffic
conditions. A notable re-visitation of that work is offered in
[6], still for saturated stations.

Classic CSMA design refers consistently to the basic model,
where re-transmissions are strictly connected to channel con-
tention. While clearly impacting channel usage, re-transmission
is a way of managing error control. Depending on context
and application targets, error control can be pursued also
with coding. Moreover, error control is less related to sharing
the channel among the contending stations, and more with
preserving end-to-end data integrity.
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As a matter of example, flows of update messages may not
need re-transmissions, and real-time traffic flows could be pro-
tected by means of coding, instead of re-transmissions. Several
instances of MAC protocols mix together these functions. As
a matter of example, in Wi-Fi, re-transmissions affect directly
the MAC procedure by modifying the contention window size
through the Binary Exponential Back-off (BEB) algorithm.

We propose a clear-cut separation between channel con-
tention related functions – referred to as Contention Man-
agement (CM) sublayer – and other tasks performed by the
MAC layer – referred to as Data Management (DM) sublayer.
Contending for channel is a collective function, involving all
stations belonging to the given access network, whereas other
data management functions pertain to individual traffic flows
between end-points of the origin and destination devices at data-
link level. We argue that decoupling data management functions
from medium contention function implies an increased mod-
ularity in the design of MAC, giving potential flexibility to
accommodate different requirements of traffic flows without
affecting the basic channel contention algorithm.

The hinge connecting the CM and DM sublayers is a flow
control function that aims at steering the system towards
an optimized working point by acting on the packet flow
offered to the shared channel. Optimization of performance
(e.g., maximization of the achievable stable throughput), is
usually pursued by adjusting parameters of the MAC protocol,
such as the contention window size or the channel holding time.
We show that optimization of performance can be achieved
by flow control, for any given set of contention-related MAC
protocol parameter values.

The flow control concept, proposed to manage the load
on the shared channel, allows simpler design and increased
modularity with respect to MAC contention procedure. It can
work with any MAC contention algorithm, not only CSMA.
The only requirement on MAC contention procedure is that
it feeds back to flow control a measure of channel usage and
the outcome of transmission attempts (success or fail). This
approach adds modularity in the design of flow control, e.g.,
with respect to optimized queue-based CSMA [7], which is
crafted on the CSMA contention algorithms, since it adapts
the contention window size.

The main contributions of this work can be summarized as
follows:

• We re-design the functional architecture of the MAC level,
proposing a clear-cut separation between contention for
channel access and other data management functions,
introducing a flow control function that regulates the
packet flow from the upper DM sublayer to the lower CM
sublayer and guarantees stability of CM queues.
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• We propose an analytical model of the MAC layer which
allows the evaluation of several performance metrics in
the general case of non-saturated traffic sources.

• Leveraging on the insight gained from the model, we
present an adaptive flow control algorithm, showing
that it achieves throughput optimality, i.e., DM queues
are effectively stabilized under flow control as long
as the load offered to the channel is smaller than the
maximum achievable stable throughput. We also discuss
the relationship of optimized flow control to traditional
contention window optimization.

The workflow of the paper is as follows. Related works
are discussed in Section II. The proposed architectural design
is introduced in Section III, including a discussion on imple-
mentation. The relevant system model is defined and analyzed
in Section IV. The model is validated against simulation of
a CSMA network in non-saturated conditions in Section V.
Leveraging on the model of Section IV, an adaptive flow control
algorithm is defined in Section VI and it is shown to provide
stability for any traffic load within the maximum achievable
stable throughput. Conclusions and hints to generalizations of
the modeling approach are given in Section VII. Mathematical
details and proofs are collected in the Appendix.

II. RELATED WORKS

Existing works that address modeling CSMA/CA under
non-saturated traffic conditions are either based on Markov
chains [8]–[11] or following a renewal process [12]–[25].
Most of these works modify Bianchi’s saturation model to
account for the fact that stations are not always backlogged, by
scaling the probability of transmission of a station according
to the utilization coefficient of the relevant packet queue. The
critical point of those models is the difficult trade-off between
complexity and accuracy. Another group of works [26]–[33]
addresses broadcast traffic in non-saturated conditions, often
with applications to vehicular and ad-hoc networking.

Optimization of CSMA has also been considered. For
example, queue-based carrier-sense multiple access (Q-CSMA)
[34] is designed to ensure throughput optimality in wireless
networks, where the access probability depends on the local
queue length information. Maatouk et al. [35] extend adaptive
CSMA targeting throughput optimality to new adaptive schemes
that account also for energy saving, by allowing sleep mode
of idle stations. Though introducing the idea of queue-based
admission control, these works still retain the approach to
adjust MAC channel sharing parameters to achieve optimal
throughput.

Optimal CSMA analysis and implementation is presented in
[36]. It addresses a practically implementable, IEEE 802.11-
compatible version of the theory developed in [7], [34],
[37]–[39] for optimal queue-based CSMA. The basic idea is
that back off probability and transmission time are adapted as a
function of local station queue length. Still in the framework of
queue-based CSMA, Xia et al. [40] introduce virtual queues to
improve fairness and delay performance. This thread of works
introduces a concept similar to flow control, i.e., the MAC
interface queue is fed according to a backlog dependent control
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Figure 1. MAC layer architecture concept. (a) Functional split into DM and
CM sublayers, connected through Flow Control. (b) Possible implementation
scheme, based on virtual DM and CM queues.

[36]. Per neighbor buffers are managed and the contention
window size of IEEE 802.11 is adapted as a function of
the control queue backlog. Queue-based control is therefore
intimately connected to MAC contention parameters.

Flow control is introduced in [41] for CSMA/CA-based
multi-hop networks. However, the purpose is to reduce the
interference between packets of a given flow that travel
through the multi-hop end-to-end route. The techniques used
to improve throughput include a hop-by-hop window-based
flow control scheme that paces the transmission of frames such
that competition between frames originating from the same
flow is reduced.

In the approach proposed in this paper, back-off parameters
(like transmission probability, contention window size, channel
holding time) are left under the control of MAC contention
algorithm. A flow control function that throttles packets to
the MAC interface buffer is in charge of managing the shared
channel load and of guaranteeing stability of station queues.

III. SYSTEM DESCRIPTION

The proposed functional architecture of the MAC layer is
split into two sublayers (see Figure 1a): the DM sublayer,
which is in charge of data integrity and scheduling (as well as
possibly other data management functions, such as security),
and the CM sublayer, which is responsible for sharing the
communication channel with other stations. Data is moved
from DM to CM sublayer through a flow control function.

Section III-A is devoted to a functional description of the
DM sublayer and the flow control function. Section III-B
provides a concise description of the slotted non-persistent
CSMA algorithm, which is the channel sharing algorithm
considered in this paper for the CM sublayer. A possible
implementation of the functional split concept, based on virtual
CM and DM queues, is outlined in Section III-C.

A. DM sublayer and flow control

Packets arrive at the station buffer at DM level from upper
layer. Let us refer to this buffer as the DM queue. The head-
of-line packet in the DM queue is moved to the CM level for
transmission on the channel, provided it is released by flow
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control. The flow control algorithm acts as a gate. A countdown
timer is initialized to I . When I hits 0, the gate opens up, i.e.,
the DM queue is inspected to check whether it has a packet
ready. In that case, the head-of-line packet of the DM queue is
transferred to the CM queue. If the DM queue is found empty,
the opportunity is lost. Once the DM queue is checked, the
timer is initialized again and it ticks away until the next timer
expiry.

The time pace I can be drawn from a fixed distribution or
it can be adapted so as to maintain the channel at an optimal
working point (see Section VI-C). A simple implementation of
the flow control countdown is obtained by dividing the time
axis into time slots of duration ∆ and opening up the gate
in each slot with probability a. This corresponds to using a
geometrically distributed timer I with mean I = ∆/a.

Packets in the CM queue are wrapped in MAC frames
which are transmitted according to the MAC contention
algorithm. We distinguish two types of frames: acknowledged
and unacknowledged. The former type applies to unicast frames
that require an ACK from the receiver. The latter type does
not require any receipt confirmation (e.g., broadcast frames).

In the first case, the CM entity reports the outcome of
transmission attempt to the DM entity. If an ACK is received,
the packet has been delivered and no further action is required.
If instead the transmission attempt fails, the packet is possibly
re-scheduled into the DM queue, according to the data integrity
policy managed by the DM sublayer. Maintaining packet
ordering is not a concern of the CM sublayer. The CM queue
adopts a First Come First Served (FCFS) policy. It accepts
packets from the DM sublayer through the flow control gate
and transmits them in the same order over the channel. To
maintain packet ordering and ease the interaction of CM
and DM sublayers, a virtual queue approach is proposed in
Section III-C.

B. CM sublayer
Channel access is operated according to a well-known variant

of CSMA, the so called slotted non-persistent CSMA [1]. When
the channel is idle, the time axis is slotted in so called back-
off slots. Let δ be the duration of a back-off slot. A station
is said to be backlogged if its CM queue is not empty. A
backlogged station senses the channel to assess whether it
is busy. This operation requires a time δ. If the channel is
sensed busy, the station waits until the channel goes back to
idle. Upon sensing an idle back-off slot, a backlogged station
takes a randomized decision whether to transmit or not. When
the station eventually starts transmitting, it keeps the channel
busy for a time interval θ, which accommodates overhead and
payload transmission time. Additionally, the interval θ also
allows time for an acknowledgement, if required.

The randomized decision can be described as follows. When
taking on a packet to transmit from the CM queue, the station
draws a positive, integer-valued random variable M . A counter
is initialized to M and decremented each time an idle back-off
slot is sensed. Transmission starts when the counter hits 0. As
a matter of example, in Wi-Fi CSMA/CA, the random counter
is drawn uniformly at random in the integer set {1, . . . , w},
where w is the current contention window size of the station.

Table I
MAIN NOTATIONS USED IN ALGORITHMS 1 AND 2

Symbol Meaning

h Head-of-line packet according to scheduler selection.
a Binary variable: a = 1 means that the head-of-line packet

requires an acknowledgment; otherwise, it is a = 0.
I Flow control timer.
CCA Clear Channel Assessment, a binary variable returned by the

physical layer, assessing whether the channel is sensed idle
or busy. The function CCA takes time δ to run.

C. Implementation

The proposed architecture decouples the lower MAC sub-
layer, which is responsible for channel contention and fair
sharing of the communication channel, from other traffic related
functions, namely data integrity (e.g., pursued by means of
re-transmissions) and scheduling (e.g., priorities, support of
quality of service requirements).

Flow control gates packets from the DM sublayer to the CM
sublayer. As the flow control timer expires, a packet is moved
from the DM queue to the CM queue. The choice of which
packet in the DM queue is the eligible head-of-line is up to
the DM queue manager process.

To implement this decoupling (see Figure 1b), we virtualize
the CM queue, by means of a counter qCM. Another counter,
qDM, holds the number of packets enqueued in the DM queue.
Packets are physically stored in a unique buffer, whose serving
order is dictated by the desired scheduling and re-transmission
policies. By using counters, a packet is picked out of the
physical buffer only when its contention process starts (see
Algorithm 1).

The counter qCM is incremented every time the flow control
timer expires and the DM queue is found not empty, namely, it
is qDM > 0. It is decremented each time a packet is transmitted
on the channel. Analogously, the counter qDM is decremented
each time a packet is moved (virtually) from the DM queue
to the CM queue, thanks to a flow control grant. The counter
qDM is incremented each time (1) a new packet is handed over
to DM by upper layer or (2) a packet must be retransmitted.

The latter event accounts for the fact that a “new” packet
transmission is being required, therefore requiring a flow
control grant. In other words, a packet being transmitted, for
example, three times (one initial attempt and two subsequent
re-transmissions) consumes three flow control grants.

The pseudo-code of an algorithm that implements the concept
described above is shown in Algorithm 1. Algorithm 2 lists
the code of the function CMfun(), called inside Algorithm 1.
The variables used in the two algorithms are defined in Table I.

In Algorithm 1, upon each timer expiry, the DM queue
length is checked. If positive (at least one packet waiting for a
transmission opportunity), the length counters of DM and CM
queues are updated, moving (virtually) one packet from the
DM queue to the CM queue. The timer is re-initialized and
starts running again. If no packet is standing in the DM queue,
the opportunity goes unused.

As long as the virtual CM queue counter qCM is positive,
there are packets ready to be transmitted on the channel
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and authorized by flow control. The CM queue length is
decremented and the packet selected by the scheduler is
retrieved from the physical buffer (head-of-line packet). The
head-of-line packet is described by a pointer h and an attribute
a. The latter is a binary variable, equal to 1 if and only if an
ACK is required for packet delivery confirmation.

The head-of-line packet is handed over to the function
CMfun() (see Algorithm 2), which is in charge of making
one transmission attempt on the channel and returning the
outcome of the transmission. The function rand_int(W0) is
invoked to set the countdown k, by drawing an integer in the
range {1, . . . ,W0} uniformly at random. The parameter W0

denotes the given contention window size. The transmission
attempt outcome is DONE unless an ACK was required and it
was not received, in which case the outcome is FAIL. Once
the outcome of the transmission attempt is returned to the
main procedure, the head-of-line packet is re-scheduled if it is
of acknowledged type (a = 1), the transmission attempt has
failed (outcome = FAIL), and a new transmission attempt is
allowed (the number of already used re-transmission attempts

Algorithm 1 DM and CM virtual queues handling.
Initialization:
1: qCM ← 0
2: qDM ← 0
3: I ← set_timer( )

Upon packet arrival at DM queue:
1: qDM ← qDM + 1

Upon timer expiry:
1: if qDM > 0 then
2: qDM ← qDM − 1
3: qCM ← qCM + 1
4: end if
5: I ← set_timer( )

CM de-queue as long as qCM > 0:
1: qCM ← qCM − 1
2: [h, a]← get_new_pkt_from_scheduler( )
3: outcome ← CMfun(h,a)
4: if (outcome == FAIL) and (retx_required) then
5: qDM ← qDM + 1
6: else
7: clear_pkt(h)
8: end if

Algorithm 2 Function CMfun called in Algorithm 1.
def CMfun(p,a):
1: k ← rand_int(W0)
2: while k > 0 do
3: CCA ← check_channel(δ)
4: if CCA == idle then
5: k ← k − 1
6: end if
7: end while
8: sendto_PHY_and_wait_for_eotx(p)
9: if a == 0 then

10: outcome ← DONE
11: else
12: ACKed ← wait_for_ack(TACK)
13: if ACKed then
14: outcome ← DONE
15: else
16: outcome ← FAIL
17: end if
18: end if
19: return outcome

is less than the maximum allowed). The DM queue length is
incremented by one, since the re-transmission attempt creates
a new packet transmission request. In any other case (no ACK
required, no more re-transmission attempts left, or successful
transmission), the transmitted packet pointed by h is cleared
off the buffer, a new head-of-line packet is selected and is
immediately processed by the CM function, as long as qCM > 0.

Stability of CM queues is guaranteed by flow control.
A discussion of the stability of DM queues is given in
Section IV-C.

IV. SYSTEM MODEL

In this section we elaborate an analytical model of the MAC
layer, consistent with the functional architecture outlined in
Section III.

We consider a set of n stations sharing a broadcast com-
munication channel. Stations can sense each other’s trans-
missions, i.e., there are no hidden stations. Hence stations
are “synchronized” and the time axis can be thought as split
into virtual slots. A virtual slot consists of one back-off
slot and possibly MAC packet transmission by one or more
stations. We assume that reception fails, if more than one
station transmits simultaneously, otherwise it is successful. The
transmission time of a MAC packet includes any overhead (e.g.,
preamble, header and trailer, inter-frame spaces). We focus on
the homogeneous case where the transmission time is the same
for all stations. Notation is simpler and we maintain the full
potential for insight on the interplay between flow control and
random multiple access.

In the following we assume that the flow control timer is
realized as a negative exponential random variable with mean
1/λ, so that the input to the CM queue is a Poisson process with
mean rate λ.1 We will see in Section IV-C that this seemingly
restrictive assumption does not impair throughput optimality.

A summary of main notations is given in Table II. A variable
that refers to station i is denoted with superscript i, e.g., x(i).
The superscript is dropped when there is no ambiguity, for the
sake of simple notation. Time-dependent variables are denoted
with an argument, e.g., x(t).

The models of the CM and DM queues are developed
separately. Section IV-A is devoted to the analysis of the
CM queue, while the model of the DM queue is derived
in Section IV-B. An in-depth discussion of stability of the
DM queue and its relationship to flow control is provided in
Section IV-C. Details of mathematical derivations are given in
Appendix A.

A. Analysis of the CM queue
The model is developed from the point of view of a tagged

station, all others being accounted for by means of their

1The actual input process to the CM queue is a Poisson process with “holes”,
corresponding to flow control opportunities not used, because the DM queue
was empty. More in depth, as long as the DM queue is in a busy period, the
input to the underlying CM queue is effectively a Poisson process. No input
is realized instead when the DM queue is idle. Assuming the input to the
CM queue is a stationary Poisson process with mean rate λ leads therefore
to a bound on performance (e.g., an upper bound of the mean delay through
the CM queue). The bound is closer to the actual performance the higher the
traffic load on the DM queue, i.e., the smaller the probability that the DM
queue is found empty.
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Table II
MAIN NOTATIONS USED IN THE ANALYTICAL MODEL

Symbol Meaning

δ Back-off slot time.
θ Transmission time of a MAC frame.
τ Probability of transmitting in a virtual slot time.
q Probability that the tagged station sees an idle channel.
λ Mean arrival rate of packets at the CM queue.
ν Mean arrival rate of packets at the DM queue.

service	time 

packet	arrival	that	finds	
the	CM	queue	empty	

count	down tx 

idle	time 

C 
packet	

departure 

Residual	virtual	
slot	time 

packet	
departure 

(a) Packet arrival that starts a new busy period

service	time 

packet	arrival	that	finds	a	
non-empty	CM	queue	

count	down tx 

packet	departure 

service	time 

packet	departure 

(b) Packet arrival during a busy period

Figure 2. Time evolution of the MAC channel as seen by the tagged station:
(a) the residual virtual slot time, before countdown starts, is highlighted by a
dark stripe; (b) no residual virtual slot time occurs. The service time C the
countdown (during which other stations can transmit: light grey rectangles)
and the transmission of the packet (dark grey rectangle).

probability of transmitting in a virtual slot time.2 We define
an Embedded Markov Chain (EMC) Qk = Q(t+k ), where
Q(t+) denotes the number of packets found in the CM queue
immediately after time t, and tk denotes the k-th packet
departing time, k ≥ 0. Therefore, Qk is the CM queue length
immediately after time tk, i.e., just after the transmission of
k-th packet.

Packets arrive at the CM queue according to a Poisson
process with mean rate λ, thanks to the regulation of the flow
control algorithm. A packet departs from the CM queue only
at the end of a virtual slot time, the one where it is transmitted.
If an arriving packet is the first one of a new busy period of
the CM queue, it has to wait the end of the current virtual slot
time. Only at that point can the countdown start. The time it
takes to complete the MAC countdown plus the ensuing packet
transmission time will be referred to as service time.

A timing scheme of the MAC channel as seen by the tagged
station is shown in Figure 2. A packet arrival, triggering the
start of a new busy period, is shown in Figure 2a. The time
evolution of a packet transmitted within a busy period is shown
in Figure 2b. Light grey rectangles represent transmissions of
stations other than the tagged one, during the countdown of

2The approach is reminiscent of mean field approximation. The effect
of all stations but the tagged station, say station i, is summarized in the
probability q(i) that station i senses an idle channel, i.e., it sees no other
station transmitting in a virtual slot time.

the tagged station. Dark grey rectangles stand for transmission
times involving the tagged station.

The state of tagged station’s CM queue at embedded times
evolves according to the following recursion.

Qk+1 =

{
Qk − 1 +Ak+1 Qk > 0,

Bk+1 − 1 +Ak+1 Qk = 0
(1)

where Ak is the number of arrivals during the k-th service
time, and Bk is the number of arrivals in the residual virtual
slot time at the beginning of a busy period. Service time is
the time required to count down the back-off counter M and
finally transmit the head-of-line packet, that is to say:

C =

{
δ + θ if M = 1,∑M−1

j=1 Xj + δ + θ if M > 1.
(2)

where Xj is the duration of the j-th virtual slot time during the
countdown of the tagged station, and M is a positive discrete
random variable, representing the initial value of the back-off
counter of the tagged station.

Let q denote the probability that no other station transmits
in a virtual slot time and hence the tagged station senses an
idle channel. We can write

X =

{
δ with probability q,

δ + θ otherwise.
(3)

The analysis developed in Appendix A yields the generating
function of the steady state Probability Density Function (PDF)
of the EMC Qk, which exists if and only if λE[C] < 1. The
first moment is given by

E[Q] =
λE[X2]

2E[X]
+

1

2
+

λ2E[C2] + λE[C]

2 (1− λE[C])
+ λE[C] (4)

Expressions of the moments of X and C are given in
Appendix A.

The probability π0 that a departing packet leaves an empty
queue behind is

π0 =
(1− λE[C])(1− φX(λ))

λE[X]
, (5)

where φX(s) = E[e−sX ] is the Laplace Trasform (LT) of the
PDF of X .

Let τ be the steady-state probability that a station transmits
in a virtual slot time. At equilibrium, the probability τ is the
long-run average fraction of virtual time slots where a station
transmits. It is proved in Appendix A that

τ =
1

E[M ] + π0

1−φX(λ)

=
E[X]
1
λ − qθ

. (6)

As the offered load λE[C] tends to 1, the queue saturates,
hence π0 → 0 and τ → 1/E[M ] = τsat.

From the definition in Equation (3), it follows that E[X] =
δ + θ − θq. Hence, Equation (6) becomes:

τ =
β + 1− q

1
λθ − q

(7)

where β = δ/θ.
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This is the master equation, yielding the transmission
probability τ of the tagged station as a function of its mean
arrival rate λ and of the probability q. This last probability
in turn is a function of the transmission probabilities of other
stations. Hence, writing the master equation for each station,
we end up with a non-linear equation system, whose fixed
point yields the values of the transmission probabilities of all
stations, as a function of their respective mean arrival rates,
provided CM queues are stable.

Let λ(i) and τ (i) be the mean arrival rate of packets at
the CM queue and the transmission probability of the i-th
station, i = 1, . . . , n. Let also q(i) =

∏n
k=1,k ̸=i (1− τ (k)) be

the probability that station i sees an idle back-off slot time, for
i = 1, . . . , n. The product form is an approximation consistent
with the kind of mean field approximation used in the analysis
of CM queues. As shown in Section V, it leads to a highly
accurate analytical solution when compared with simulations.

The non-linear equation system that yields the vector τ =
[τ (1), . . . , τ (n)] as a function of the mean arrival rate vector
λ = [λ(1), . . . , λ(n)] can be written as

τ = Φ(τ). (8)

Expliciting the individual equations, we get

τ (i) = Φi(τ
(1), . . . , τ (n)) =

β + 1− q(i)

1
λ(i)θ

− q(i)
, (9)

where β = δ/θ, and Φi is the i-th component of the vector
Φ. It defines a continuous and differentiable mapping on the
convex and compact subset [0, 1]n of Rn.

The following theorem states that a solution of the system
in Equation (8) exists and it is unique under mild conditions.

Theorem 1. Let Φ : [0, 1]n 7→ [0, 1]n be the continuous and
differentiable mapping defined by Equation (9). Assume that the
following conditions hold: (i) λ(i)θ < 1

β+1 for all i = 1, . . . , n;
(ii)

∑n
i=1 λ

(i)θq(i) < 1. Then a solution of the equation system
in Equation (8) exists in the interior of [0, 1]n and it is unique.

Remark. The condition (i) forbids that the solution τ (i), i =
1, . . . , n may belong to the boundary of the region [0, 1]n, i.e.,
that any of the transmission probabilities might be 1 (τ (i) = 0
is not a solution of the system, since β+1−q(i) ≥ β > 0, ∀i).
More in depth, from Equation (7) it follows that τ (i) < 1
implies β +1− q(i) < 1/(λ(i)θ)− q(i), hence λ(i)θ < 1/(β +
1), which is just condition (i). Also the converse holds, i.e.,
condition (i) implies that it must be τ (i) < 1. The intuitive
meaning of condition (i) is that the normalized load λ(i)θ
of CM queue i is strictly less than the theoretical maximum
1/(β+1), achievable in case only station i is part of the CSMA
network (hence n = 1) and it transmits in every virtual slot
time (hence τ (i) = 1). The condition (ii) means that the overall
normalized throughput (coefficient of utilization) achieved by
the set of n stations cannot attain 100 %.

Proof. See Appendix B.

In the setting considered in this paper, flow control parame-
ters are actionable, while MAC parameters are given. The trans-
mission probability τ is therefore capped by the rules of CSMA.

Specifically, it must be τ ≤ τsat = 1/E[M ]. Let τ(λ) ∈ [0, 1]n

denote the unique fixed point of Theorem 1, corresponding to
given packet arrival rates λ = [λ(1), . . . , λ(n)]. We distinguish
two cases: (i) τ(λ) ∈ [0, τsat]

n; (ii) τ(λ) ∈ [0, 1]n \ [0, τsat]
n. In

the first case a feasible equilibrium solution exists, hence the
vector λ leads to a stable system. In the second case, there is
no feasible equilibrium point for the transmission probabilities
under the given arrival rates λ. We can therefore define the
following stability region for the arrival rates:

Λ = {λ ∈ Rn |λ ≥ 0 and τ(λ) ∈ [0, τsat]
n}, (10)

where inequalities on vectors are meant to be entrywise.
In the rest of the paper we refer to the homogeneous case

where mean arrival rates at DM and CM queues are same for all
stations. In fact, we can derive more insightful relationships in
case of homogeneous stations, having same mean arrival rates
and hence same transmission probabilities, i.e., τ (i) = τ, ∀i.
In that case the probability q can be expressed as

q = (1− τ)n−1. (11)

Inverting Equation (7) we express λ as a function of τ :

λ =
τ

δ + θ[1− (1− τ)q]
=

τ

δ + θ[1− (1− τ)n]
(12)

We find out that the renewal reward approximation for τ in
Equation (7) consists of balancing the CSMA throughput of the
tagged station3 to the mean arrival rate at the CM queue of the
tagged station. This is nothing but the necessary steady-state
input-output equilibrium of the CM queue.

Since the right-hand side of Equation (12) is monotonously
increasing with τ , the upper bound of λ for stability is:

λsup =
τsat

δ + θ[1− (1− τsat)n]
. (13)

It can be checked that τ → 0 as λ → 0 (light traffic regime),
while τ → τsat for λ → λsup (heavy traffic regime). It can be
checked as well that λE[C] → 1 as λ → λsup, so that the mean
length of the CM queue diverges (saturation regime).

Using the CM queue model, we calculate the following
performance metrics:
Ps : Probability of successful packet transmission;
ρ : Channel Busy Ratio (CBR), the mean fraction of time

that a station senses the channel busy (including times
when the station itself transmits);

DCM : Delay through the CM queue, defined as the time elapsing
since a packet joins the CM queue until its transmission
is completed.

The probability of delivering a packet (successful transmis-
sion), given that the station transmits, is

Ps = q = (1− τ)n−1. (14)

The CBR is evaluated as the ratio of the time spent to
transmit a packet to the sum of that time and the duration of
the idle back-off slot times preceding the packet transmission.
The mean number of idle back-off slot times preceding packet

3In the setting considered in this paper, a packet leaves the CM queue
irrespective of whether its transmission was successful or not.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3239410

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



7

transmission is denoted with N I and is expressed as N I =
1/[1− (1− τ)n]. Then, the CBR can be expressed as follows:

ρ =
θ

δN I + θ
=

θ[1− (1− τ)n]

δ + θ[1− (1− τ)n]
= λθ

1− (1− τ)n

τ
.

(15)
As for queueing delay DCM, by Little’s law, we have:

E[DCM] =
E[Q]

λ
, (16)

where E[Q] is given in Equation (4).

B. Analysis of the DM queue

The input to the DM queue consists of packets arriving
from upper layer. Service of the DM queue is triggered by
flow control. When the flow control timer expires, a packet
is taken from the DM queue and copied to the CM queue4,
where it is eventually transmitted on the channel. If reliable
data transfer is required, a feedback from the CM queue is
expected, to signal that the packet has been acknowledged. In
case the transmission attempt fails (ACK timeout), the packet
is re-inserted into the DM queue.

Let us focus on loss-sensitive packet flows. Each packet
requires an ACK and it is retransmitted in case of failure, until
it is eventually delivered with success. We neglect the event
of packet dropping due to finite number of re-transmission
attempts, since the probability of such an event is usually very
small (e.g., Wi-Fi allows up to 7 re-transmissions; even with a
failure probability of 0.5, the probability of having to drop a
packet is 0.58 ≈ 0.004).5

We assume the flow control timer is set to a random value,
drawn from a negative exponential PDF with mean 1/λ. A
packet is serviced out of the DM queue when it is eventually
delivered with success, which occurs with probability Ps.
Hence, we approximate the service process out of DM queue
as a Poisson process with mean rate λ, thinned with the success
probability Ps. According to this approximation, the service
time is distributed according to a negative exponential PDF
with mean 1/(λPs) and the DM queue for acknowledged traffic
is modeled as a G/M/1 queue.

Let Qk denote the number of packets in the DM queue
immediately after an arrival. Then

Qk+1 = Qk + 1−Dk, (17)

where Dk is the number of departures in an inter-arrival time
T . By the theory of G/M/1 queue (e.g., see [42, Ch. 6]), we

4Virtually copied into the CM queue, if the implementation approach outlined
in Section III-C is followed.

5Limiting the maximum number of re-transmission does not impact the CM
queue, since a packet is removed out of the CM queue after being transmitted
irrespective of the outcome of its transmission attempt. The number of allowed
re-transmissions does, however, impact the stability of DM queues, since it
cuts a fraction of submitted packets, in case they fail all transmission attempts.
Given the maximum allowed number of re-transmissions m (the parameter
max_retry of WiFi), the stability condition of the DM queue becomes
ν − ν(1− Ps)m+1 < λPs. If m→∞, we recover the stability condition
analyzed in Section IV-B. In case no re-transmission is allowed (m = 0), the
stability condition becomes ν < λ, which is consistent with the fact that a
packet is removed out of both DM and CM queues once they are transmitted,
irrespective of the outcome of its transmission attempt.

get the following PDF for the steady state number of customers
Q random variable:

P(Q = h) = (1− ξ)ξh , h ≥ 0. (18)

The parameter ξ is the unique root in [0, 1] of the equation
z = φT (λPs − λPsz), where φT (s) is the LT of the PDF of
the inter-arrival time T .

The Cumulative Distribution Function (CDF) of the waiting
time is expressed as follows:

FW (t) = 1− ξe−λPs(1−ξ)t , t ≥ 0. (19)

The mean of the system time DDM through the DM queue is
given by

E[DDM] =
1

λPs
+ E[W ] =

1

λPs(1− ξ)
. (20)

C. Stability and flow control

For the DM queue to be stable, it must be ν ≡ 1/E[T ] <
λPs. Using Equations (12) and (14), the stability condition is
written as follows:

ν <
τq

δ + θ − θ(1− τ)q
=

τ(1− τ)n−1

δ + θ − θ(1− τ)n
, (21)

where the right-hand side is the usual expression of the satura-
tion throughput of CSMA, holding in case of a homogeneous
system. Note that the right hand side of Equation (21) is a
function of λ, i.e., the mean rate of flow control grants. Given
λ, τ is determined according to Equation (7).

Let us define

νsup = max
0≤τ≤τsat

τ(1− τ)n−1

δ + θ − θ(1− τ)n
, (22)

This is the upper limit of the mean packet arrival rate ν for
which it is guaranteed that the DM queue can be stabilized for
a suitable value of λ, as shown in the following theorem.

Theorem 2 (Throughput optimality of flow control). For
any assigned ν ∈ (0, νsup), there exist λmin and λmax, with
0 < λmin < λmax ≤ λsup, where λsup is given in Equa-
tion (13), for which the DM queue is stabilized provided that
λ ∈ (λmin, λmax).

Proof. See Appendix C.

Intuitively, too low values of λ fail to provide enough
transmission opportunities. On the contrary, too high values of
λ induce a high congestion level on the shared channel, thus
reducing the probability of success Ps, eventually impairing
stability.

Let us dig this point further, to understand how flow control
stabilizes the DM queue, as long as ν ≤ νsup. Assume no flow
control is in place and the packet flow at rate ν is directly
fed to the channel. Assuming stability is achieved and taking
re-transmissions into account, it must hold that

ν = f(τ) =
τ(1− τ)n−1

δ + θ − θ(1− τ)n
, τ ∈ (0, τsat). (23)

We consider the intersections of the curve y = f(τ) and
the horizontal line y = ν, as a function of the transmission
probability τ ∈ [0, τsat].
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(b) ν > f(τsat)

Figure 3. Example sketch of stability induced by flow control. The solid/dashed
line curve corresponds to the function f(τ) in Equation (23) with n = 10
and θ/δ = 34. (a) In this case it is ν < f(τsat), hence there exists only one
intercept of the horizontal line at level ν with the curve f(τ). (b) In this case
it is ν > f(τsat), hence there exist two intercepts of the horizontal line at
level ν with the curve f(τ).

If ν < f(τsat), there is a single intersection point at τ1,
corresponding to a stable equilibrium point (see Figure 3a).
The drain of the queue is larger than ν for every τ > τ1
and less than ν in the opposite case. Hence, τ1 is a stable
equilibrium point.

If instead it is ν > f(τsat), the horizontal line y = ν
intersects the curve y = f(τ) in two points, τ1 < τ2 (see
Figure 3b). The smaller intercept (black marker) is a locally
stable equilibrium point, but the bigger one (red marker) is an
unstable point of equilibrium. If the queue fluctuations lead
the system beyond the latter point, the average drift becomes
positive and the queue backlog tends to increase. Eventually,
the queue is driven into saturation and delay diverges.

Flow control forces the mean rate of packets leaking to the
channel not to exceed λ, for 0 < λ < λsup. This corresponds
to reducing the effective sweeping interval of the transmission
probability from (0, τsat) to (0, τ(λ)), where τ(λ) is the unique
solution of Equation (12).

Let then Ps(λ) = [1 − τ(λ)]n−1. Even for ν > f(τsat),
provided it is ν < λPs(λ), the DM queue remains stable, since
the input packet rate to the CM queue cannot exceed λ. Only
the locally stable intersection point τ1 is attainable, while the
unstable point τ2 can never be attained, thanks to flow control.
It is as if flow control “cuts” the curve f(τ) up to the abscissa
τ(λ), leaving out the right-tail of the curve, and the unstable
equilibrium point located there.

Figure 3 sketches an example of this situation. The solid line
curve represents the achievable part of f(τ), while the part
forbidden by flow control is shown as a dashed line curve. The
horizontal dashed line marks the level of the input arrival rate
ν (normalized by multiplying it by the transmission time θ).
The empty circle marker shows the location of the achievable
throughput under flow control for a value of λ chosen so
that it is ν < λPs(λ). The two intersection points of the
horizontal line at level ν with the curve f(τ) are marked by
filled circles. The one on the left (black one) corresponds to a
stable equilibrium point (the only achievable one, under flow
control). The one on the right of the plot (red one), is the
unstable equilibrium point, that would fatally attract the queue
in the long run, without flow control.

Table III
NUMERICAL VALUES OF PARAMETERS USED FOR MODEL VALIDATION

Definition Value Definition Value

Back-off slot time 9 µs SIFS 16 µs
PLCP preamble 20 µs AIFS (BE class) 43 µs
PLCP header 16 µs ACK length 14 Byte
MAC header length 34 Byte Basic bit rate 6 Mbit/s
MAC payload length 1500 Byte Air bit rate 65 Mbit/s

V. MODEL VALIDATION

A simulation model of n CM queues interacting through
the CSMA channel has been implemented in MATLAB.
Physical layer parameters have been adjusted to represent the
baseline functionality of IEEE 802.11ac DCF. The back-off
random variable M is uniformly sampled over the integer set
{1, 2, . . . ,W0}. Numerical values of parameters are listed in
Table III.

The simulation model accounts for all details of the access
protocol, including post back-off and immediate transmission.
Post-back-off: When a packet is transmitted and the station

has an empty buffer, before going idle, it draws a back-
off value and starts countdown. If no new packet arrives
before the countdown expires, the station goes definitely
back to idle state, waiting for new packets. Otherwise, the
newly arrived packet hijacks the on-going countdown.

Immediate transmission: When a station is idle and a new
packet is generated, the station checks if the channel
is idle for an AIFS time. If that is the case, the frame
containing the packet is transmitted immediately, without
any countdown. If instead the channel becomes busy
before the AIFS time is completed, the station falls back
to the usual access procedure.

Simulations were run for a fixed packet size with channel
holding time equal to θ = 34 ·δ ≈ 0.31ms (corresponding to a
MAC payload length of 1500 Byte transmitted at air bit rate of
65 Mbit/s). If a collision event occurs, reception is assumed to
fail with probability 1. To be consistent with the CM sublayer
definition, re-transmissions are disabled.

Performance results are plotted as a function of:
• the normalized packet arrival rate λ̂ = λ/λsup for a fixed

number of stations n = 10;
• the number of stations n, for a fixed ratio λ/λsup = 0.8,

where λsup is the maximum arrival rate that can be sustained by
the CM queue (see Equation (13)). In this numerical example
it is τsat = 2/(W0 + 1) ≈ 0.1176, hence 1/λsup ≈ 1.9ms.
Simulations are displayed as square markers, along with the
95-level confidence intervals.

Figure 4 displays the CBR ρ as a function of the normalized
packet arrival rate λ̂ (Figure 4a) and of the number of stations
n (Figure 4b). ρ grows almost linearly for small to moderate
values of λ/λsup, and saturates for large values of the mean
arrival rate. ρ grows with n, hovering on quite large values
given the relatively high load level considered in Figure 4b.
The agreement between model predictions and simulations
is excellent. This is confirmed consistently by all subsequent
performance metrics, as well as by many other comparison
results, not shown here for space reasons.
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Figure 4. CBR for θ = 34 · δ: (a) as a function of the normalized arrival rate
λ/λsup, for n = 10 stations; (b) as a function of the number of stations for
λ/λsup = 0.8.
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Figure 5. Average CM queue delay normalized with respect to θ, for θ = 34·δ:
(a) as a function of the normalized arrival rate λ/λsup, for n = 10 stations;
(b) as a function of the number of stations for λ/λsup = 0.8.

The mean delay of the CM queue, E[D], is plotted in
Figure 5. The behavior of the plot in Figure 5a is the typical
delay-versus-throughput curve, slowly ramping up for light
load levels and sharply increasing as the load gets close to
saturation level. Also the curve in Figure 5b is monotonously
growing with n, although with a concave shape that tends to
saturate for large n.

The probability of success Ps is plotted in Figure 6. From
Figure 6a it appears that the probability of success is close to 1
at light load levels, dropping quickly to its value in saturation
when the mean packet arrival rate λ tends to its upper limit. A
similar pattern is found when Ps is plotted as a function of the
number of stations in Figure 6b, except that it is never quite
close to 1, even for low values of n, given the high considered
load. Moreover, Ps decreases towards 0 as n grows.

The probability of having the CM queue empty at the end of
a virtual slot time π0 is plotted against λ̂ in Figure 7a and as a
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Figure 6. Probability of success Ps for θ = 34 · δ: (a) as a function of the
normalized arrival rate λ/λsup, for n = 10 stations; (b) as a function of the
number of stations for λ/λsup = 0.8.
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Figure 7. Probability of empty queue π0 for θ = 34 · δ: (a) as a function of
the normalized arrival rate λ/λsup, for n = 10 stations; (b) as a function of
the number of stations for λ/λsup = 0.8.

function of n in Figure 7b. In the former plot, as expected, π0

decreases from 1 down to 0 as the load increases from 0 up to
the saturation point. The decrease exhibits two rates. For low
to moderate loads a slow decay dominates the behavior of the
probability of empty queue. After a breakpoint around a load
level of 60 %, the slope of the π0 curve becomes definitely
steeper and the curve falls rapidly towards 0.

In the plot of π0 versus n a decreasing trend is noted after an
initial growth. This is the outcome of two contrasting “forces”.

Requiring that λ/λsup = a, for a given constant a, implies
that λ = aλsup = aτsat

δ+θ−θ(1−τsat)n
, which is a decreasing

function of n. When n grows, but it is still at low values,
the decrease of λ entails an increase of the probability of
finding an empty CM queue.

As n grows further, the impact of collisions is stronger,
hence congestion sets in, even if λ decreases. For large n
values, π0 is attracted to its asymptotic value as n → ∞.

More in depth, it is easy to check that the following limits
hold asymptotically as n → ∞: τ → aτsat, λ → aτsat/(δ + θ),
q → 0, E[X] → δ+ θ, E[C] = E[X]/τsat + qθ → (δ+ θ)/τsat,
φX(λ) → e−aτsat . Hence,

π0 = (1− λE[C])
1− φX(λ)

λE[X]
→ (1− a)

1− e−aτsat

aτsat
(24)

The asymptotic value of π0 for large n is always smaller
than the value of π0 for n = 1. It is easy to check that
π0|n=1 = (1− a) 1−e−λδ

λδ , with λδ = aτsat
δ

δ+τsatθ
. Since 1−e−y

y
is a monotonously decreasing function of y, it follows that
limn→∞ π0 < π0|n=1. With the assumed numerical values of
a = 0.8 and τsat ≈ 0.1176, we have π0 → 0.191 as n → ∞
and π0|n=1 = 0.198.

The probability of transmission τ is plotted against λ̂ in
Figure 8a and against n in Figure 8b. A two-regime behavior
is evident also in this curve, as in the case of the probability of
empty queue. For low to moderate load levels, the probability
of transmission grows slowly. Once the load exceeds a critical
region, the growth of the probability of transmission accelerates.
As the load level tends to the saturation point the transmission
probability tends to its saturation value τsat = 2/(W0 + 1) ≈
0.1176. A similar behavior is found for τ as a function of n,
except that in this case τ → 0.8 · τsat ≈ 0.0941 as n → ∞.

The normalized throughput TH = λPs/λsup is shown in
Figure 9. When plotted as a function of λ̂, the normalized
throughput exhibits a maximum. It is attained where offered
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Figure 8. Probability of transmission τ for θ = 34 · δ: (a) as a function of
the normalized arrival rate λ/λsup, for n = 10 stations; (b) as a function of
the number of stations for λ/λsup = 0.8.
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Figure 9. Normalized throughput TH = λPs/λsup for θ = 34 · δ: (a) as a
function of the normalized arrival rate λ/λsup, for n = 10 stations; (b) as a
function of the number of stations for λ/λsup = 0.8.

traffic and loss of packets due to collision strike an optimal
balance. For smaller values of λ̂, the channel is underloaded,
For larger values of the load, the channel is congested. A
monotonic decreasing behavior is seen when the normalized
throughput is plotted against n, since in that case TH is
proportional to Ps, which decreases as the number of stations
grows.

Finally, Figure 10 plots the CCDF of the delay through the
CM queue for n = 10 and λ = 0.9 · λsup. The model matches
the CCDF excellently, showing that its predictive power extends
nicely to probability distribution, beyond moments.

VI. DESIGN OF ADAPTIVE FLOW CONTROL

The adaptive flow control aims at adjusting the parameter
λ in an environment where the number of active stations
can change over time, so as to drive the system towards an
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Figure 10. CCDF of the mean CM queue delay for n = 10 stations, θ = 34·δ
and queue load 0.9.

optimal working point, i.e., the one where the achievable stable
throughput is maximized. We first characterize the optimal
working point, then we state a simple adaptive updating of λ
that drives the system to that working point.

A. System optimization

The upper bound of the normalized maximum stable through-
put η = νθ is (see Equation (22)):

ηsup = θνsup = max
0≤τ≤τsat

τ(1− τ)n−1

β + 1− (1− τ)n
, (25)

where β = δ/θ. The maximum is achieved by setting τ equal
to6 min{τsat, τ

∗}, where τ∗ is the unique root of the equation

(1− x)n = (1 + β)(1− nx) , x ∈ [0, 1]. (26)

In the following we denote the solution of Equation (26)
with τ∗(n) to stress its dependence on n. It can be verified
that τ∗(n) is monotonously decreasing with n, from τ∗(1) = 1
down to τ∗(∞) = 0.

An approximate solution of this equation can be found
introducing the variable change α = nx and taking the limit
for n → ∞. Then, Equation (26) is approximated by:

e−α = (β + 1)(1− α) (27)

Since β > 0, it is easy to show that this equation has a unique
positive solution belonging to the interval (0, 1). Let α∗ denote
the solution. Since e−α >

(
1− α

n

)n
, ∀n ≥ 1, it follows that

τ∗(n) > α∗/n. It can also be verified limn→∞ nτ∗(n) = α∗,
i.e., the approximation τ∗(n) ≈ α∗/n is asymptotically sharp
as n grows.

Letting τ = τ∗(n) ∼ α∗/n into Equation (12), we find for
large n:

λ∗ =
α∗/n

δ + θ − θ(1− α∗/n)n
≈ 1

nθ

α∗

β + 1− e−α∗

(*)
=

1

nθ

1

β + 1
=

1

n(θ + δ)

where we have used the fact that α∗ is the root of Equation (27)
to obtain the equality (∗).

The simple and intuitively appealing result is that the optimal
flow control rate to maximize the overall stable net throughput
in Equation (25) is the inverse of n times the transmission
time, where n is the number of stations sharing the channel.
Therefore, optimal flow control can be achieved by estimating
n, the number of stations contending on the channel. This is
known to be a feasible task, e.g., see [43], [44].

B. Classic versus flow control based optimization

The optimal working point of the MAC channel can be
achieved by adjusting the back-off probability distribution. In
case the back-off random variable is uniformly distributed over
{1, 2, . . . ,W0}, the contention window size W0 can be adjusted.
This is the target of Idle Sense algorithm [45], [46], which is
based on the observation of the number NI of idle back-off

6For typical values of τsat and β, it turns out that τsat > τ∗ for all values
of n greater than a small threshold, e.g., 2 or 3.
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slots between two consecutive transmissions (a function of the
number of contending stations) and uses the estimated mean
value of NI to adjust W0.

In the proposed flow control approach, the optimal working
point is pursued in a different way, namely by adjusting the
flow control rate λ, while back-off parameters are fixed.

Let neff denote the number of effectively contending sta-
tions on the channel, i.e., stations that are backlogged. The
fundamental theory developed originally in [5] suggests that
throughput is maximized when contention window sizes are
the same for all (re-)transmission attempts, and equal to the
following optimal contention window size:

W ∗ =
2neff

α∗ − 1 , (28)

where α∗ is the unique root of Equation (27) in [0, 1]. Here
the control variable is the contention window size, while
the number of contending stations neff is taken as input to
optimization.

Flow control flips this perspective. It strikes the optimized
balance in Equation (28), for a given contention window size
W0, by making the average number of backlogged stations neff

equal to the optimal level n∗ such that 2n∗/α∗ − 1 = W0. 7

In other words, λ is adjusted so that the level of contention
on the channel, namely neff, hovers about the optimal level
n∗ = α∗(W0+1)/2 for the given contention window size W0.

To prove this, we note that neff = nb, where b is the
probability that a station is backlogged in a virtual slot time.
b is obtained as the ratio of the mean number of virtual slot
times counted down by a station to the mean number of virtual
slot times between two consecutive transmissions of the same
station, namely:

b =
W0+1

2
W0+1

2 + π0

1−φX(λ)

=
1

1 + τsat
1−λE[C]
λE[X]

=
λE[X]/τsat

1− qθλ
.

(29)
Setting λ = λ∗ = 1/[n(δ + θ)], hence τ ≈ α∗/n, and

assuming n is large, so that q = (1− τ)n−1 ≈ e−α∗
, we have

neff = nb =
nλ∗E[X]/τsat

1− e−α∗θλ∗ =
W0+1

2
1

δ+θ (δ + θ − θe−α∗
)

1− e−α∗ 1
n

θ
δ+θ

∼ W0 + 1

2

(
1− e−α∗

β + 1

)
=

W0 + 1

2
α∗,

where the last but one passage holds for large n (a regime
where q ∼ e−α∗

and e−α∗ 1
n

θ
δ+θ is negligible with respect to

1), and the last passage stems from α∗ being the solution of
Equation (27).

C. Flow control algorithm

Let us consider the CBR metric, given in Equation (15). In
the asymptotic regime for large n, with λ = λ∗ = 1/[n(δ+θ)],

7Since neff ≤ n, forcing neff to satisfy neff = n∗ = W0+1
2

α∗ implies that
it must be n ≥ α∗(W0 + 1)/2. With typical numerical values, it is α∗ ≪ 1,
so that this inequality is satisfied even for small n.

and hence τ ∼ α∗/n, we have

ρ = λ∗θ
1− (1− τ(λ∗))n

τ(λ∗)
∼ θ

n(δ + θ)

1− (1− α∗/n)n

α∗/n

∼ 1− e−α∗

(β + 1)α∗ =
1− e−α∗

β + 1− e−α∗ = ρ∗.

The expression of ρ∗ depends only on the parameter β = δ/θ.
Let us refer to the time I between packet grants issued by

the flow control algorithm. The mean of I is I = 1/λ. The
value of I that leads the system to its optimal working point,
i.e., where the stable throughput is maximized, is given by
I
∗
= 1/λ∗ = n(δ + θ).

On the other hand, the CBR ρ is a monotonously increasing
function of λ, hence monotonously decreasing with I . At the
optimal working point we have ρ = ρ∗. Then, the adaptive
control strategy is to estimate the current ρ on the channel and
adjust I so as to drive ρ towards ρ∗.

In the language of dynamical control systems, the mean flow
control timer is governed by the dynamic law dI

dt = κ[ρ(t)−ρ∗],
with κ a positive quantity and ρ(t) the estimated CBR at time
t. If the estimated CBR is smaller than the target one, the
derivative is negative and we decrease the flow control timer,
which is the right thing to do, since we are not using efficiently
the channel due to too slack arrivals at the CM queue. If instead
the estimated CBR is bigger than the target one, than stations
are too aggressive, causing too many collisions, and we need
to increase the flow control timer, which is what the dynamic
equation dictates, since the derivative is positive.

Let us now translate the dynamical system statement into
a discrete time algorithm for updating the mean flow control
timer I . To this end, we introduce the following notation:

• tk is the k-th control update time. It corresponds to the
end of channel transmission time8;

• ρ̂k is the estimated CBR at time tk;
• Ik is the mean flow control timer value at tk;
• Θk is the amount of time that the channel is sensed busy

between tk−1 and tk;
• mρ is the number of samples of CBR used in the moving

average estimator of ρ̂.

The estimated CBR is obtained as a moving average over
the last mρ sampling time intervals, i.e.,

ρ̂k =

∑k
j=k−mρ+1 Θj

tk − tk−mρ

(30)

The adaptation of I is defined as follows:

I(tk+1) =

{
I(tk) + κ(δ + θ) if ρ̂k ≥ ρ∗,

max{Imin, I(tk)− κ(δ + θ) otherwise.
(31)

Correspondingly, we set λ(t) = 1/I(tk), ∀t ∈ [tk, tk+1).

8As a matter of example, in the CSMA/CA protocol of Wi-Fi the end of
channel activity time can be determined by observing an idle channel for a
time equal to AIFS.
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Figure 11. Sample paths of (a) DM queues and (b) CM queues for the transient
experiment described in Section VI-C with n = 10 stations.
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Figure 12. Two groups of n = 5 stations each, one of which is active through
the whole simulation experiment, while the other one is active only between
time 5 s and 12.5 s. (a) Sample path of timer I normalized with respect to
activity time θ. (b) Sample path of normalized throughput.

D. Numerical examples

In the implementation of the algorithm, we set Imin = δ+ θ,
mρ = 5, and κ = 0.25 as a default value. The mean flow
control timer is initialized as I(t0) = mρ(δ + θ), since in this
time it is possible to collect enough data to estimate the CBR.

In a first experiment, we analyse the time behavior of the
flow control adaptive algorithm by considering a set of n = 10
stations. Five stations start transmitting at time 0, generating an
overall load equal to 60 % of the capacity of the system. After
5 s another group of five stations starts transmitting, offering
an overall traffic equal to 60 % of the capacity of the channel.
This second group of stations is active for 5 s. After that time,
the five stations of the second group go back to idle, leaving
only the initial five station to contend for the channel.

As a result, in the five seconds where both groups of stations
share the channel, there is an overload, highlighted by the
fast build-up of DM queues shown in Figure 11a. The flow
control algorithms guarantees that the channel is not overloaded,
causing a collapse of throughput as a consequence of massive
collisions. This is clearly visibile from the steady and limited
excursion of CM queues sample paths in Figure 11b.

The normalized timer I/θ sample path is shown in Fig-
ure 12a. As long as the overall offered load equals 60 % of
the channel capacity, the timer takes a low value, i.e., flow
control is essentially letting packets move immediately to the
CM queue as soon as they arrive. When the offered traffic
surges up due to five new stations jumping on the channel, the
normalized timer quickly raises up hitting the expected optimal
value. As soon as the five newcomer stations stop transmitting,
the normalized timer falls to an intermediate level, beacuse of
the pressure caused by the backlog accumulated by the initial

(a) Sample paths of DM queues. (b) Sample paths of CM queues.

Figure 13. Sample paths of (a) DM queues and (b) CM queues for the transient
experiment described in Section VI-C with n = 20 stations.
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Figure 14. Two groups of n = 10 stations each, one of which is active
through the whole simulation experiment, while the other one is active only
between time 5 s and 12.5 s. (a) Sample path of timer I normalized with
respect to activity time θ. (b) Sample path of normalized throughput.

five sations during the overload time. As soon as the backlog
is cleared, the normalized timer goes back to a baseline level
corresponding to a low load on the system.

The time-varying channel coefficient of utilization, averaged
over time intervals of 100 ms, is depicted in Figure 12b. The
coefficient of utilization is obtained as the ratio of the achieved
throughput and the maximum achievable throughput nνsup. At
the beginning it hovers around 60 %. As five more stations
kick in, the utilization coefficient shifts close to 1, for the
whole time where congestion is on. It lands quickly back
to its baseline level of 60 % as soon as the additional five
stations stop transmitting and the accumulated backlog is
cleared. Thus, during overload, there is no throughput collapse.
On the contrary, the capacity of the CSMA channel is used
almost entirely (coefficient of utilization ≈ 1).

From Figure 11 it is also apparent that DM queue build up
occurs at all stations, those that are already on the channel,
and the newly arrived stations. This is evidence of fairness in
channel sharing, i.e., stations using the channel back-off and
give up shares of channel capacity to newcomers.

In a second experiment, we analyse the robustness of the
proposed algorithm by doubling the number of stations, i.e.,
there are two groups of 10 stations each. A first group starts
transmitting from the beginning of the experiment, while the
second group of 10 stations sets on about 5 s after the beginning
of the simulation.

While the normalized throughput in Figure 14b is essentially
the same as seen in Figure 12b, the flow control timer sample
path in Figure 14a peaks at about twice the value it achieves
in Figure 12a. This is expected, since the timer value targeted
by the flow control algorithm is proportional to the overall
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number of contending stations, which is doubled in the second
set of experiments as compared to the first set. As for queue
dynamics, doubling the number of stations appears to reduce the
fluctuations of DM queues. This effect, consistently observed
in several other experiments (not shown for space reasons)
may be attributed to a statistical smoothing effect when the
system moves towards a large scale one, for the same overall
load (i.e., each single station contributes less to the overall
traffic load).

Regarding the flow control algorithm parameters, the gain
coefficient κ affects the duration of transients and the accuracy
of the control. Larger values of κ imply a faster convergence
close to optimal values, but also larger fluctuations around
the optimal value. To illustrate with an example, we consider
n = 40 stations sharing the communication channel and always
active throughout the simulation experiment. The mean arrival
rate at DM queues is set so that the overall load is 90 % of
the achievable maximum throughput.

The behavior of the station timer and of the overall
throughput are shown in Figure 15. Figures 15a and 15b refer
to κ = 0.25, while Figures 15c and 15d refer to κ = 0.025.
The achieved normalized throughput hovers around 0.9 in both
cases, consistently with the imposed traffic load. However, it is
apparent that in case of κ = 0.025 there is a longer transient
with respect to the more aggressive case where κ = 0.25. The
achieved throughput drops initially due to the large number of
contending stations and hence the large number of collisions.
Then, the timer ramps up quickly, thus slowing down the flow
of packets from DM queues to CM queues and relieving the
congestion on the shared communication channel. After about
3 s a steady state is achieved. In case of κ = 0.25 the steady
state is attained after less than 1 s, since the timer is adapted
in a much faster way (compare Figure 15a and Figure 15c).
In case κ = 0.25, the timer fluctuates significantly during
steady state, while with κ = 0.025 the timer value maintains
a smoother behavior, with essentially no fluctuations.

VII. FINAL REMARKS AND MODEL EXTENSIONS

In this work we propose a modular design of the MAC
layer, where the channel contention function is separated
from data management functions such as data integrity and
scheduling. We define a flow control function to connect the
two functionalities. Flow control guarantees the stability of
queues at the contention sublayer. It is based on a timed gate
that opens up at randomized times, letting a packet from the
upper DM sublayer pouring into the CM sublayer buffer. The
mean value of the timer can be optimized adaptively as a
function of the number of contending stations on the channel.
The adaptive algorithm is based on the insight gained out of
the presented analytical model and its asymptotic analysis for
large numbers of stations. Numerical results show that the
model provides highly accurate predictions for all values of
the number of stations.

The second major contribution of the paper is an analytical
model of the CM sublayer, leading to an accurate model
of a non saturated channel run according to non-persistent
CSMA. The model assumes symmetric stations (all having the
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Figure 15. Analysis with n = 40 stations active through the simulation
experiment: (a) and (c) sample path of timer I normalized with respect to
activity time θ for κ = 0.25 and κ = 0.025, respectively; (b) and (d) sample
path of normalized throughput for κ = 0.25 and κ = 0.025, respectively.

same offered traffic statistics) and fixed transmission times.
Those assumptions can be relaxed, still retaining the modeling
approach based on taking the point of view of one tagged
station and dealing with the effect of all others by means of a
kind of mean field approach. Allowing variable transmission
times as well as accounting for heterogeneous scenarios, where
traffic loads offered by different stations are different, is part
of future work.

The presented functional split concept, with adaptive flow
control, can be applied to any underlying MAC channel sharing
algorithm. Investigating the application of the flow control
paradigm to MAC protocols other than CSMA is also part of
future work.

APPENDIX

A. Analysis of the CM queue

1) Embedded Markov Chain model of the CM queue: From
Equation (2), we derive the LT of the PDF of the service time
C as:

φC(s) = e−(θ+δ)sϕM (φX(s))

φX(s)
(32)

where ϕM (z) = E[zM ] is the Generating Function (GF)
associated with the random variable M and φX(s) is the
LT of the PDF of X . From the definition of X in Equation (3)
we derive:

φX(s) = e−sδ
[
q + (1− q)e−sθ

]
(33)

The first two moments of C and X can be calculated by
deriving the LTs of their respective PDFs and setting s = 0:

E[C] = θ + δ + (E[M ]− 1)E[X] (34)

σ2
C = σ2

M (E[X])2 + (E[M ]− 1)σ2
X (35)
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and

E[X] = δ + (1− q)θ (36)

σ2
X = q(1− q)θ2 (37)

where σ2
v is the variance of the random variable v.

In the special case where M is uniformly distributed over
{1, . . . ,W0}, we have for the LT of the PDF of C:

φC(s) = e−(θ+δ)s 1− [φX(s)]W0

W0[1− φX(s)]
(38)

and for the first two moments:

E[C] = θ + δ +
W0 − 1

2
E[X] (39)

σ2
C =

W 2
0 − 1

12
(E[X])2 +

W0 − 1

2
σ2
X (40)

By means of standard Markov chain analysis methods applied
to Equation (1) (e.g., see [47, Ch. 5]), it can be found that the
GF of the limiting probability distribution of Qk at steady-state
is given by

ϕQ(z) = π0
[ϕB(z)− 1]ϕA(z)

z − ϕA(z)
(41)

where π0 = P(Q = 0), and ϕA(z), ϕB(z) are the GFs of the
number A of arrivals in a service time and the number B of
arrivals in the residual virtual slot time at the beginning of a
busy period, respectively. The probability π0 that a departing
packet leaves an empty queue behind is found by requiring
that ϕQ(1) = 1 and applying de l’Hôpital’s rule. It follows:

π0 =
1− ϕ′

A(1)

ϕ′
B(1)

(42)

where ′ denotes derivation. Steady-state exists provided the
mean number of arrivals at the CM queue in a virtual slot
time is less than 1, i.e., ϕ′

A(1) < 1. The mean queue length is
found as follows, again applying de l’Hôpital’s rule:

E[Q] = ϕ′
Q(1) =

ϕ′′
B(1)

2ϕ′
B(1)

+
ϕ′′
A(1)

2[1− ϕ′
A(1)]

+ ϕ′
A(1) (43)

As for the GFs of A and B, let N(u) be the number of
arrivals of a Poisson process with mean rate λ in a time interval
of duration u. Then

ϕA(z) = E[zN(C)] = E[E[zN(C)|C = y]]

=

∫ ∞

0

eλy(z−1) fC(y) dy = φC(λ− λz)

As for B, it counts arrivals in a virtual slot time, given that
there is at least one arrival (and hence a busy period of the
queue can start):

ϕB(z) = E[zN(X)|N(X) > 0]

=

∞∑
k=1

zkP(N(X) = k |N(X) > 0)

=

∑∞
k=1 z

k
∫∞
0

(λu)k

k! e−λu dFX(u)

P(N(X) > 0)

=

∫∞
0

(
e−(λ−λz)u − e−λu

)
dFX(u)

1− P(N(X) = 0)

=
φX(λ− λz)− φX(λ)

1− φX(λ)

The first moments of A and B are

E[A] = ϕ′
A(1) = λE[C]

E[B] = ϕ′
B(1) =

λE[X]

1− φX(λ)

The second derivatives of the GFs of A and B are also
easily computed, yielding ϕ′′

A(1) = λ2E[C2], and ϕ′′
B(1) =

λ2E[X2]/[1− φX(λ)]. Hence

E[A2] = ϕ′′
A(1) + ϕ′

A(1) = λ2E[C2] + λE[C]

E[B2] = ϕ′′
B(1) + ϕ′

B(1) =
λ2E[X2] + λE[X]

1− φX(λ)

Substituting the expression of the first derivatives of ϕA(z)
and ϕB(z) into Equation (42), we obtain the expression of π0

in Equation (5).
Waiting times can be found by considering that

ϕQ(z) = φC(λ− λz)φW (λ− λz) (44)

where W denotes the waiting time random variable. It can be
deduced that

φW (s) =
π0λ [1− ϕB(1− s/λ)]

s− λ+ λφC(s)

=
1− λE[C]

E[X]

1− ϕX(s)

s− λ+ λφC(s)

2) Transmission probability: Let τ be the steady-state
probability that a station transmits in a virtual slot time. At
equilibrium, the probability τ is the long-run average fraction
of virtual time slots where a station transmits. Let us observe
the tagged station queue over busy cycles, a busy cycle being
composed of an idle time followed by a busy period. Busy
cycles form a renewal process, thanks to the Poisson arrival
assumption. A renewal reward argument shows that

τ =
E[K]

E[M ]E[K] + E[J ]
(45)

where K is the number of packet transmissions performed in
a busy period, and J is the number of virtual slot times in an
idle time.

Using the result on the mean number of packets served in a
busy period from standard M/G/1 theory, we have

E[K] =
ϕ′
B(1)

1− ϕ′
A(1)

=
1

π0
(46)

The idle time consists of a sequence of virtual time
slots where the stations other than the tagged one possibly
transmit their packets. Since arrivals at the tagged station
follow a Poisson process, the number J of virtual slot times
making up an idle time is geometrically distribution with ratio
P(no arrivals at the tagged station in a virtual slot time) =
P(N(X) = 0) = φX(λ). Formally, we have

P(J = k) = [1− φX(λ)][φX(λ)]k−1, k ≥ 1 (47)

Hence the mean number of virtual slot times in an idle time is

E[J ] =
1

1− φX(λ)
(48)

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3239410

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



15

Summing up, from Equations (45), (46) and (48), we get:

τ =
1/π0

E[M ] 1
π0

+ 1
1−φX(λ)

=
τsat

1 + τsat
π0

1−φX(λ)

(49)

where τsat = 1/E[M ] is the limit of τ as the traffic load tends
to saturation, i.e., π0 → 0. In case the back-off counter M
is uniformly distributed over {1, . . . ,W0}, we have E[M ] =
(W0 + 1)/2.

Substituting π0 from Equation (5) into the expression of τ
in Equation (49), we find

τ =
1

E[M ] + 1−λE[C]
λE[X]

=
E[X]

E[M ]E[X] + 1
λ − [(E[M ]− 1)E[X] + θ + δ]

=
E[X]
1
λ − qθ

=
β + 1− q

1
λθ − q

(50)

where β = δ/θ. This proves Equation (7).

B. Proof of Theorem 1

To prove the theorem, we appeal to the uniqueness Theorem
stated in [48]. We need to prove the two conditions of the
theorem statement, namely: (a) 1 is not an eigenvalue of the
derivative matrix Φ′; (b) no solution exists on the boundary
of the region where the map Φ is applied.

Let us first prove that condition (b) above holds in our case.
Assume τ (i) = 1. The i-th equation of the system τ = Φ(τ)
yields

1 = τ (i) =
β + 1− q(i)

1
λ(i)θ

− q(i)
⇒ λ(i)θ =

1

β + 1
(51)

This last equality contradicts condition (ii) assumed in the
statement of Theorem 1, hence it cannot be τ (i) = 1 for any i.

Let us now consider condition (a) of the theorem in [48].
The entry (i, k) of the derivative matrix Φ′ is

∂Φi

∂τ (k)
=


1

λ(i)θ
−β−1(

1

λ(i)θ
−q(i)

)2 k ̸= i

0 k = i

(52)

Re-arranging Equation (7), we get

λ(i)θ =
τ (i)

β + 1− (1− τ (i))q(i)
(53)

Inserting this expression in the derivative in Equation (52) for
i ̸= k, we have

∂Φi

∂τ (k)
=

(1− τ (i))τ (i)q(i)

(1− τ (k))(β + 1− q(i))
(54)

We need to prove that there does not exist a non-null vector
v such that Φ′v = v. We will prove this by contradiction.
Assume that such a vector exists. Hence, we can write

vi =
∑
k ̸=i

vk
∂Φi

∂τ (k)
=

(1− τ (i))τ (i)q(i)

β + 1− q(i)

∑
k ̸=i

vk
1− τ (k)

(55)

Note that we have already proved that it must be τ (i) < 1, ∀i.
Let uk = vk/(1− τ (k)). From Equation (55) we derive

ui
β + 1− q(i)

τ (i)q(i)
=

∑
k ̸=i

uk (56)

Summing ui on both sides, we get

ui
β + 1− (1− τ (i))q(i)

τ (i)q(i)
=

1

λ(i)θq(i)
ui =

n∑
k=1

uk (57)

for i = 1, . . . , n. This proves that all components of the vector
u = [u1, . . . , un] have the same sign or are equal to 0. Since
we are assuming that v, hence u, is not identically null, all
components of u must be either positive or negative. As a
consequence, the sum on the rightmost-hand side of Equa-
tion (57) is non null. Multiplying both sides of Equation (57)
by λ(i)θq(i) and summing up over i, we get

n∑
i=1

ui =

n∑
i=1

λ(i)θq(i)
n∑

k=1

uk ⇒
n∑

i=1

λ(i)θq(i) = 1 (58)

where the implication stems from the fact that
∑n

i=1 ui ̸= 0.
The result in Equation (58) contradicts the condition (i) of
Theorem 1, hence there cannot exist a nonnull vector v which
is an eigenvector of Φ′ corresponding to the eigenvalue 1. This
completes the proof.point (a) of the theorem in [48]. Then, the
proof of Theorem 1 is complete.

C. Proof of Theorem 2
The DM queue is stable provided ν < λPs, i.e., if and only

if
νθ <

τ(1− τ)n−1

β + 1− (1− τ)n
= g(τ) (59)

where β = δ/θ and τ is determined from λ by inverting the
following monotonous mapping:

λθ =
τ

β + 1− (1− τ)n
, τ ∈ [0, τsat]. (60)

Let ν̂ = νθ and λ̂ = λθ denote the normalized arrival rate
at DM queue and CM queue, respectively. The feasible range
of λ̂ is (0, λ̂sup), where

λ̂sup =
τsat

β + 1− (1− τsat)n
(61)

The function g(τ) defined in Equation (59) is monotonously
increasing from 0 up to νsup for τ ∈ [0, τ∗], then it decreases
monotonically from νsup down to 0 when τ ∈ [τ∗, 1], where
τ∗ is the unique solution in [0, 1] of the equation g′(τ) = 0,
i.e.,

(1− τ)n = (β + 1)(1− nτ) (62)

We distinguish two cases.
a) τsat ≤ τ∗: . Since the range of feasible τ is restricted

to [0, τsat], if follows that g(τ) is monotonously increasing
for the whole range of feasible values of τ . Hence, for any
given ν < νsup there exists a unique intersection of g(τ)
with the horizontal line at level ν̂. Correspondingly, a unique
value of λ̂ is determined, through the monotonous mapping
in Equation (60), say it is λ̂min. The inequality ν̂ < g(τ) is
met for all values of λ̂ such that λ̂ ∈ (λ̂min, λ̂sup). Hence, the
statement of the theorem is proved with λ̂max = λ̂sup.
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b) τsat > τ∗: . In this case, the location τ∗ of the
maximum of g(τ) is interior in the interval [0, τsat]. For
ν̂ < g(τsat) there is a single intersection of the function
g(τ) with the horizontal line at level ν̂. Hence, the inequality
ν̂ < g(τ) is met for λ̂ ranging in the interval (λ̂min, λ̂sup), as
in the previous case.

If instead it is ν̂ ≥ g(τsat), the equality ν̂ = g(τ) has two
solutions, one smaller and the other larger than τ∗. Let the
two solutions be τ1 and τ2, with τ1 < τ2. Those two values
of τ are mapped to two values of λ̂ through Equation (60),
say they are λ̂min and λ̂max, where it is λ̂max ≤ λ̂sup. Since
ν̂ < g(τ), ∀τ ∈ (τ1, τ2), the DM queue is stable for any
λ̂ ∈ (λ̂min, λ̂max), which completes the proof.
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