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Abstract—We tackle the challenges of accurately replicating
modern automotive network architectures, particularly those
reliant on automotive Ethernet and Time-Sensitive Networking
(TSN), in simulation environments. We describe an open-source
TSN simulation model tailored to match a real-world TSN testbed
built using off-the-shelf hardware. We address key challenges
such as hardware and software imperfections as well as varying
data traffic patterns from automotive sensors. By incorporating
real data traces from LIDAR and camera sensors, we improve
simulation accuracy. Our findings underscore the importance of
accounting for hardware and software nuances to ensure faithful
simulation results, thus advancing the reliability of automotive
network simulations.

I. INTRODUCTION

In-car networking is currently undergoing a radical shift [1],
away from numerous dedicated buses and sub-buses connecting
dedicated Electronic Control Units (ECUs); instead, in-car
networking is moving to modern architectures like a Time-
Sensitive Networking (TSN) based communication backbone
running automotive Ethernet. This shift to automotive Ethernet
is a central enabler [2] for consolidation of advanced vehicle
functions and for vehicular cloud computing. In-car networking
thus mirrors the trend of a wide array of applications from smart
manufacturing [3] to spacecraft industries [4], [5]. Beyond
this, research is also exploring the potential of TSN for
enabling Vehicle to everything (V2X) communication over both
guaranteed-service [6] and best-effort wireless networks [7].

The associated rise in network and scheduling complexity,
however, means that the design and validation of in-car
networks is becoming increasingly challenging [8] making
simulation the new default approach to parameterization [9].
Thus, research and the automotive industry alike are increas-
ingly looking towards digital twinning [10] for system design
and validation.

Such a digital twin can be provided only by such computer
simulations that are demonstrably able to accurately model
the behavior of the in-car network. This, in turn, requires
a careful parameterization of the simulation model and the
use of realistic input data traces, as we demonstrate in this
paper. Openly available data traces are, however, rare, and the
parameterization of the simulation model is heavily dependent
on the specific hardware and software configuration of the
in-car network.

In this paper we fill this gap by:
• providing a detailed description of a publicly available

TSN simulation model and configuration,
• matched to an easily assembled real-world TSN testbed

composed of Commercial Off-the-Shelf (COTS) hardware.
• We also demonstrate the importance of realistic input data

traces for the simulation model; and
• provide such traces for a camera and a LiDAR sensor.1

The remainder of this paper is structured as follows. In
Section II we discuss related work in terms of all of TSN
simulation, TSN testbeds, and digital twinning. In Section III
we describe how off-the-shelf hardware is assembled into the
real-world TSN testbed underlying this paper and how the
testbed is configured. In Section IV we describe the publicly
available TSN simulation model used in this paper. In Section V
we discuss important aspects of the parameterization of the
simulation model to accurately match the testbed. In Section VI
we discuss input data modeling and the importance of realistic
input data traces. The paper concludes with a summary given
in Section VII.

II. RELATED WORK

TSN is a collection of standards being developed by the
IEEE 802.1 TSN Task Group to enable deterministic real-time
communication over Ethernet networks [11]. These standards
define features that enable synchronization, bounded latency,
communication reliability, and resource management. The
growing need to provide deterministic communication in
various industries and application domains has led to recent
efforts by IEEE and 3GPP to extend the capabilities of wired
TSN to the wireless domain [12]. In this context, evaluating the
performance of end-to-end TSN systems with different levels
of complexity is of utmost importance. Designing an accurate
TSN evaluation framework presents numerous challenges, such
as supporting precise timing requirements, capturing real-world
network variability, and providing scalability and flexibility.

A common approach to validating TSN systems is to evaluate
their performance on real hardware testbeds under realistic
conditions. In a recent survey, Senk et al. [13] provide an
overview of open source projects aimed at low-cost develop-
ment and evaluation of integrated 5G-TSN architectures in a

1Available at https://github.com/LIST-LUXEMBOURG/vnc2024-traces
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general context. In particular, the authors describe the current
standardization status of 5G-TSN integration, present existing
open-source 5G systems, and discuss available hardware for
open-source 5G and TSN integration. An earlier work by Quan
et al. [14] proposes OPENTSN, a generic open-source TSN
testbed that allows prototyping and customization of TSN
systems on Field Programmable Gate Arrays (FPGAs). The
proposed system includes two main components, TSNSwitch
and TSNNic, and supports several key features such as a
Software-Defined Networking (SDN)-based network control
mechanism, a time-sensitive management protocol, and a time-
sensitive switching model.

Senk et al. [15] describe a testbed design that uses open
source software and COTS hardware to measure the perfor-
mance of generic TSN networks. The testbed design is publicly
available and is used to gain insight into the performance of
real-world TSN devices. In an extended version of this work,
Ulbricht et al. [16] further analyze critical aspects of TSN with
multiple stream sets and identify challenges in configuring the
Gate Control List (GCL), especially for traffic with variable
packet sizes.

Miranda et al. [17] evaluate the suitability of two cloud-
based testbeds for TSN experimentation. They focus on key
features supporting time synchronization, traffic scheduling,
and filtering. Moreover, they also introduce a prototype SDN
controller for TSN Centralized Network Configuration (CNC)
and implement crucial modules for TSN network deployment
and management.

Focusing on the automotive domain, Xu et al. [18] describe
a TSN testbed design using COTS hardware and open-source
software, and use it to evaluate the performance of TSN in
terms of latency and jitter. Bosk et al. [8] also propose a
methodology for evaluating TSN performance in the context of
in-car networks. The proposed methodology, which is based on
the ENGINE framework [19], can also be generalized to other
domains. However, the experimental evaluation only considers
synthetically generated periodic traffic. Also, the engine only
supports software timestamping, which does not meet the
synchronization accuracy required by most TSN setups.

Despite the clear advantages in terms of real-world network
performance evaluation, TSN validation in hardware testbeds
remains a challenging task due to hardware cost, scalability,
and deployment complexity. For this reason, simulation-based
approaches have gained popularity by enabling rapid evaluation
at scale. For example, Falk et al. [20] present a TSN simulation
framework based on OMNeT++ for converged time-triggered
and best-effort traffic. This framework, which includes several
TSN simulation components such as Strict Priority Scheduling
(SPS), a Time-Aware Shaper (TAS), a Credit-Based Shaper
(CBS), and frame preemption, has been evaluated under
different configuration settings. Zhou et al. [21] evaluate the
performance of various TSN traffic shaping and scheduling
mechanisms in a fully simulated automotive Ethernet context.
A simulation-based approach to analyzing the potential of
integrating multiple in-car wired TSN networks over best-
effort wireless links for V2X communications is proposed

in [7]. Here, the authors focus on a vehicular platooning use
case and demonstrate the benefits of synchronizing the TSN
schedulers of the platoon members in terms of end-to-end delay.
However, these publications do not reveal the degree to which
these have been validated in real TSN testbed environments.

Few TSN simulation papers are co-published with a treatment
of validation in hardware. One example is the simulation model
developed by Jiang et al. [22] in OMNeT++ and validated on a
TSN hardware testbed. The proposed simulation model consists
of four modules: (i) a configuration module, which defines the
GCL; (ii) a TAS module, which executes the GCL configuration;
(iii) a queue module, which stores and distributes the incoming
traffic into different priority queues; and (iv) a transmission
module, which simulates the actual data transmission on the
physical media. Validation with the TSN hardware testbed
demonstrates the accuracy of this simulation model in terms
of end-to-end delay. However, the authors only considered
synthetic data with a fixed transmission interval, which does
not emulate a real-world application.

Another example is the experimental approach proposed by
Bosk et al. [23], which allows mirroring the hardware-based
TSN configuration in a simulation environment. Specifically,
the authors extend the ENGINE framework [19] to support
a simulation environment based on OMNeT++ that replaces
the original hardware deployment. To this end, they describe a
methodology that allows the ENGINE scenario configuration
and physical hardware deployment to be replicated in OM-
NeT++. The simulation results are compared with the testbed
experiments and generally show lower delays in simulation
than in hardware experiments for both CBS and TAS. The
authors conclude that this discrepancy is due to the fact that
the processing delay in the hardware is not modeled in the
simulation. We confirm their findings in our experiments and
investigate them further, using more realistic data sources and
gaining more insight into the importance of using real data
traces to configure the simulation environment.

Karle et al. [24] present a holistic platform for autonomous
driving research that includes the EDGAR research vehicle
and its digital twin. The autonomous vehicle is equipped with a
high-performance network switch that supports IEEE 802.1Qav
and Precision Time Protocol (PTP)-based time synchronization.
While time constraints are not currently guaranteed, the
proposed system design allows for such guarantees using the
TSN capabilities of the switch. To create the digital twin of the
network, the authors rely on the extended ENGINE framework,
which includes the OMNeT++ simulation tool [23]. While this
solution introduces the first openly available holistic digital
twin of an autonomous vehicle, it may be too complex and
expensive for researchers working on novel TSN-based in-car
network architectures to adopt it as their lab prototype.

In this paper, we focus specifically on in-car networks and
describe a methodology for configuring and cross-validating an
open-source TSN simulation model using a more accessible,
COTS hardware testbed. Our proposed solution thus enables
researchers to develop a digital twin of automotive TSN
networks with many different levels of complexity.
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Figure 1. Network topologies of the testbed.

III. TESTBED CONFIGURATION

Figure 1 illustrates the network architecture of the testbed
used in the experiments. It models the commonly employed hub-
and-spoke design with data streams passing through a central
bridge [25]. Many of the components are Relyum2 branded
devices manufactured by SoC-e as listed in the following.

The testbed contains three switches with TSN bridge
capabilities: Switch1, Switch2, and Switch3 (RELY-TSN-Bridge
v20.1.11, RELY-TSN-Bridge+/12 v22.2.0, RELY-TSN-Bridge
v22.3.0, respectively). An optional Traffic Generator (RELY-
TRAF-GEN v20.1.0) is connected to Switch2 to generate
interfering traffic. The Observer (RELY-TSN-LAB v.21.1.1c2)
is a transparent device with test capabilities to measure
the end-to-end delay and bandwidth of a device or TSN
network segment under various test conditions. The hardware
components are connected with 1 Gbit/s Cat5 Ethernet cables,
each 1 m long. Figure 2 illustrates the setup.

Virtual Local Area Networks (VLANs) are implemented
to match real-world deployments for performance, security,
and network management. Each VLAN sees only the traffic
that is intended for it. In the context of TSN, VLANs allow
for the efficient separation of traffic streams with different
quality of service requirements. Bridges use the VLAN priority
information to prioritize and manage network traffic. The TSN
components are easily configurable through their internal web
server, the Web Manager. The tool allows configuration of
various hardware parameters, including the stream processing
rules at each port and the supported TSN standards.

In our testbed, we use two key TSN features: time synchro-
nization and traffic shaping. Time synchronization is performed
using IEEE 802.1AS-2020, also known as the Generalised
Precision Time Protocol (gPTP). Within the gPTP domain,
all time-aware systems synchronize their clocks with a single

2https://www.relyum.com/

Figure 2. Photo of the testbed. From left to right: LiDAR sensor, auxiliary
Switch1, central Switch2 (black), auxiliary Switch3, Listener; top: Observer.

Figure 3. Screenshot of the simulation; components arranged and labeled to
represent the physical topology.

Grandmaster (either a bridge or an end station [26]). Traffic
shaping is performed using the IEEE Std 802.1Qbv Time-
Aware Shaper (TAS). The TAS schedule configuration is based
on assigning a time slot to one or multiple of the eight Ethernet
priorities, which are encoded as Priority Code Points (PCPs)
in the Ethernet frame header.

IV. SIMULATION FRAMEWORK

The simulation uses OMNeT++ version 6.0.1 as a discrete
event simulator in combination with INET version 4.5.2 as
a network simulation framework. INET provides a basic end
node (TsnDevice) and a bridge node (TsnSwitch) for TSN with
preconfigured submodules. It also provides a dedicated clock
node (TsnClock) that can be used as a gPTP master clock and
is also TSN capable. The nodes do not have any TSN features
enabled by default, but each node has multiple parameters that
can be used to enable them.

The simulated network consists of three end nodes (of type
TsnDevice): Talker, Listener, and Traffic Generator, as well as
three bridge nodes (of type TsnSwitch) to connect them. All
network nodes are connected via an Eth1G channel with each
channel set to a length of 1 m. The network topology is shown
in Figure 3 and is identical to that of the testbed – except for
the absence of the Observer, whose role is fulfilled by logging
data directly from the simulation.

INET uses the stream classification and identification feature
to add VLAN tags to the outgoing frames. Each frame is
assigned to a stream based on specific criteria in the bridging
module of the talker. VLAN tagging is then performed by



Table I
TRAFFIC CONFIGURATION FOR THE MODEL PARAMETERIZATION

EXPERIMENTS.

Traffic Type PCP Frame Size Inter-Frame Gap

Control data 4 300–1500 Byte, step 300 1 ms
Noise data 2 1500 Byte 13.33, 20, and 40 µs

Table II
TAS CONFIGURATION FOR THE MODEL PARAMETERIZATION EXPERIMENTS.

slot duration PCP0 PCP1 PCP2 PCP3 PCP4 PCP5 PCP6 PCP7

1 100 µs · · · · ✓ · ✓ ·
2 450 µs ✓ ✓ ✓ ✓ · ✓ ✓ ✓

the stream classification in the bridging module of the talker
based on the stream to which the frame belongs. To correctly
tag and interpret incoming frames, it is necessary to enable
the incoming and outgoing stream feature in the end nodes.
INET uses the concept of tags to add additional information
to frames in upper layers to inform lower layers to add them.
Therefore, it is necessary to exclude the VLAN tag from the
PacketDirectionReverser module in the bridge nodes to prevent
loss of tags.

To use a TAS in the bridge nodes, the hasEgressTraffic-
Shaping parameter must be enabled. This replaces the default
queue module with the Ieee8021qTimeAwareShaper module. By
default, no scheduling is performed and all queues are always
open. Scheduling can be defined manually or an automatic
scheduler can be used. To ensure consistency between the
simulation and the testbed, scheduling is done manually. To
define the scheduling, one must define the cycle time, the slot
time for each gate, and the offset. Each queue is initially open
by default. Each slot includes the guard band. The mapping
of the PCP to the gate is based on the “recommended priority
to traffic class mappings” table of IEEE 802.1Q [27, page
217, table 8-5], but can be modified to meet the network
requirements.

The gPTP module must be configured for time synchro-
nization. INET provides a basic gPTP module that can
act as a master or slave clock with modifiable sync and
delay measurement intervals. To simulate clock drift, the
parameterizable ConstantDriftOscillator module can be used
for each clock provided by INET.

In the sink module, there is one UdpSinkApp for each type
of traffic in the network, each listening on a different port. The
application on the Talker depends on the experiment.

V. MODEL PARAMETERIZATION

A. Testbed

For the model parameterization experiments, the Talker and
Listener of the testbed are off-the-shelf Linux machines used
to send and receive data.

Two types of traffic are used in this set of experiments, as
shown in Table I. The first type of traffic is time-sensitive
control traffic. The Talker is configured to generate Layer 2

control traffic with a specific frame size, VLAN ID, PCP,
inter-frame gap, and outbound VLAN interface. The control
traffic has a PCP of 4 and an inter-frame gap of 1 ms. Each
experiment consists of sending 20 000 frames through the TSN
network and to the Listener. In addition, several experiments
are performed with different frame sizes for the control traffic:
300, 600, 900, 1200, and 1500 Byte.

The second type of traffic is the congestion traffic (hereafter
referred to as noise) which is transmitted by the Traffic
Generator. This traffic is configured with a fixed frame size of
1500 Byte and a PCP of 2. In addition, this traffic is configured
to have different noise levels, i.e., to occupy different portions
of the available bandwidth: 30 %, 60 %, and 90 %. The absence
of noise is also considered as part of the study. This is done in
order to observe if there is any impact on the control traffic.

Regarding the TSN mechanism, we use a simple TAS
configuration consisting of two slots, as shown in Table II.
The first slot is for the control and gPTP traffic and the second
slot is for all eight priority queues except the one with PCP 4.
The length of the first slot is 100 µs, the length of the second
slot 450 µs, for a total cycle time of 550 µs.

B. Simulation

The testbed setup is reproduced in simulation by configuring
the Talker as a standard UdpSourceApp. It produces User
Datagram Protocol (UDP) datagrams at a configurable interval.
The datagram length is configured to match the frame lengths
used in the testbed experiment (accounting, of course, for
header lengths).

The Traffic Generator uses a standard UdpSourceApp from
INET to produce UDP datagrams with a length of 1446 Byte,
that is, Ethernet frames with a length of 1500 Byte. The sending
interval depends on the data rate of the experiment. For 30 %,
it is 40 µs, for 60 % it is 20 µs, and for 90 % it is 13.33 µs.
For the case with 0 % noise, an offset beyond the end of the
simulation time is configured to effectively disable the Traffic
Generator.

Frames are classified based on the destination source port
and mapped to either a control or noise traffic stream. As in
the testbed, the control traffic stream receives PCP 4, while
the noise traffic receives PCP 2. Each outgoing Ethernet port
has two traffic classes per queuing module. The first class is
for noise traffic and the gate opens for 450 µs with an offset of
100 µs into a 550 µs cycle. Therefore, the other gate governs
the control traffic and remains open for 100 µs with no offset,
followed by 450 µs of being closed.

For time synchronization, Switch2 is chosen as the master
node, with Switch1 and Switch3 as slave nodes. All other
parameters are left at their default values.

C. Result Analysis

We now analyze the numerical results obtained from the
model parameterization experiments in the TSN testbed and
compare them with those obtained from the simulation. The
metrics studied are the end-to-end (e2e) delay and jitter under
various combinations of noise level and frame size. To measure
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Figure 4. (Non-) matching metrics for different frame sizes and 90 % noise.
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Figure 5. (Non-) matching eCDFs of e2e delay and jitter for 1500 Byte frames
and 90 % noise.

the e2e delay, the Observer records a timestamp each time a
frame starts to be transmitted by the Talker and Switch3. The
difference between these two values is recorded as the e2e
delay per packet. For the jitter, we calculate the difference in
e2e delay between two consecutive received frames.

Figure 4 illustrates the mean e2e delay and jitter for different
frame sizes and for a noise level of 90 %. Note that, as
described, we performed the experiments for multiple noise
levels, but only show the results for 90 % because we confirmed
that – as expected – the level of noise has no substantial bearing
on either the e2e delay or the jitter. Only using a larger frame
size does increase the e2e delay. As can be seen, a noticeable
discrepancy between simulation and testbed results can be
observed.

Figure 5 helps to illustrate the underlying reason via
empirical Cumulative Distribution Functions (eCDFs) of e2e
delay and jitter for a frame size of 1500 Byte: The operating
system of the Talker in the testbed does not guarantee a fixed
production interval, leading to randomness in the inter-frame
gap. In order to reproduce this behavior in the simulation,
we analyzed the distribution of the actual inter-frame gap in
the testbed and noticed that it conforms closely to a normal
distribution. Therefore, we run another set of simulations where
the UDP datagrams are produced at an interval chosen from
a normal distribution with a mean of 1 ms and a standard
deviation of 22.8 µs based on measurements of the testbed
hardware.

Both effects mentioned above are captured very well by
both the testbed and the simulation, as can be seen in Figure 6.
Figure 7 further confirms these findings via the eCDFs of
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Figure 6. Like Figure 4, but after inter-frame gap distribution matching.
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Figure 7. Like Figure 5, but after inter-frame gap distribution matching.

e2e delay and jitter when using a frame size of 1500 Byte for
the control traffic and a noise level of 90 %. Again, we only
show the eCDFs for this particular configuration because the
variation in frame size and noise level has very little effect on
these distributions.

The only remaining difference between the simulation and
testbed results is a constant offset in the mean e2e delay of
about 7 µs and in the jitter of about 3 µs. We speculate that this
is due to the processing time and hardware imperfections, which
are not modeled in the simulation, paralleling the findings of
Bosk et al. [23], who identified a similar discrepancy between
simulation and hardware experiments and also concluded
that this is due to the processing delay that is not modelled
in software. This discrepancy could be reduced by adding
a hardware-dependent processing delay component to the
simulation model. However, even without such hardware-
dependent tuning, we can conclude that for the selected COTS
components, the simulation model can be brought into good
agreement with measurements from the testbed.

VI. INPUT DATA MODELING

A. Testbed

The input data modeling experiments use real sensors
as Talker nodes that might be part of a vehicular network.
Therefore, the Linux desktop acting as the talker is replaced
with a Sensor – either a LiDAR or a camera. In this setup,
Switch1 is used to add the VLAN tag in the Ethernet frames
sent by the sensors. As a result, the Observer monitors traffic
on the smaller network segment between Switch1 and Listener.

The first sensor option is a Robosense Helios 16 high-
precision 3D LiDAR using 16 laser beams. This device uses
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Figure 8. Matching metrics of the LiDAR sensor between testbed and simulation.
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Figure 9. (Non-)matching metrics of the camera sensor between testbed and simulation when modeled as a constant bitrate source: Simulated delay is too low,
jitter too high.
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Figure 10. Matching metrics of the camera sensor between testbed and simulation when modeled using a real data trace: The distributions of both the delay
and the jitter are now captured more closely by the simulation.

Ethernet as data transmission protocol for in-vehicle use and
supports time synchronization methods such as GPS, PTP, and
gPTP. In more detail, the LiDAR sends data via Ethernet using
UDP datagrams. This data uses both the Main Data Stream
Output Protocol (MSOP) – which contains point cloud data
(laser scanning data, including distance, angle, and reflection
intensity) – and the Device Information Output Protocol
(DIFOP) – which outputs various configuration information
about the current state of the LiDAR.

The second sensor option is a computer (Jetson AGX Orin)
streaming video from a Logitech C920 HD PRO camera

supporting 1080p video at 30 Frames Per Second (FPS) with
autofocus and light/color correction. As the camera is connected
via USB, we use the computer to encode and transmit the video
signal via UDP. For this, the live camera capture is streamed
over the network utilizing the GStreamer framework. In more
detail, the GStreamer graph captures video from the Video
for Linux API version 2 (V4L2) device of the camera at
a resolution of 1280x720 and 10 FPS, burning in timecode
information. It then uses the NVIDIA nv v4l2 h264enc H.264
encoder block with its Instantaneous Decoder Refresh (IDR),
Sequence Parameter Set (SPS), and Picture Parameter Set (PPS)



Table III
TRAFFIC CONFIGURATION FOR THE INPUT DATA MODELING EXPERIMENTS.

Traffic Type PCP Payload Size Mean Data Rate

LiDAR data 4 1248 Byte 7.65 Mbit/s
Video data 3 16–1400 Byte 4 Mbit/s

Table IV
TAS CONFIGURATION FOR THE LIDAR.

slot duration PCP0 PCP1 PCP2 PCP3 PCP4 PCP5 PCP6 PCP7

1 48 µs · · · · ✓ · · ·
2 52 µs ✓ ✓ ✓ ✓ · ✓ ✓ ✓

Table V
TAS CONFIGURATION FOR THE CAMERA.

slot duration PCP0 PCP1 PCP2 PCP3 PCP4 PCP5 PCP6 PCP7

1 48 µs · · · ✓ · · · ·
2 52 µs ✓ ✓ ✓ · ✓ ✓ ✓ ✓

interval set to 15 frames to allow fast (re-)synchronization to the
stream. It then payload-encodes the H.264 video into Real-time
Transport Protocol (RTP) packets, streaming these via UDP to
the Listener. The result is a variable-bitrate video stream, as
is currently being investigated for automotive contexts in the
scientific literature [28].

Table III summarizes information on the traffic priorities,
Ethernet payload sizes, and the mean transmission data rate
of both sensors. Similar to the previous set of experiments, a
simple TAS configuration with two slots is used. The cycle
and slot duration are the same for both sensors. The first slot
is used for the Sensor traffic and the second slot is used for
the rest of the traffic except the Sensor. Tables IV and V show
a detailed configuration of the scheduling mechanism.

B. Simulation

To simulate the sensors, the Talker application remains the
same, UdpSourceApp. We configure the Talker to generate
frames with a fixed inter-frame gap and frame size to match
the average values of inter-frame gap and frame size as
measured in the testbed. Although the documentation of the
LiDAR seems to infer an inter-frame gap of 666.67 µs, we
decided to use the average of the measurements, that is,
1333 µs, as an input parameter to the simulation model and
set its productionInterval parameter to this value instead.
For the camera, the packetLength is set to 1442 Byte and
productionInterval to 2738.5 µs.

The control traffic is mapped to PCP 3 or 4, depending on the
sensor. The values were assigned based on the characteristics
and quality of service requirements described in [26]. Two
priority classes are used in each queuing module. The gate
for the control traffic is opened for 48 µs and then closed for
52 µs. The Traffic Generator is disabled by configuring a time
offset beyond the end of the simulation time. Regarding the

time synchronization, Switch2 serves as the master clock, while
Switch3 acts as a slave node.

C. Result Analysis

We first analyze the traffic sent by the LiDAR through the
TSN network. Figure 8 shows how the open source model
allows us to model the behavior of the LiDAR sensor in
simulation and to validate the TAS configuration. We plot
a time series of the throughput and an eCDF each for the
recorded e2e delay and jitter values. As can be seen, the
throughput, e2e delay, and jitter measurements in the testbed
all agree well with the simulation. No frame loss was recorded
in either hardware or simulation.

We follow the same approach to validate the camera sensor
in hardware and simulation. However, there is an important
difference between the LiDAR and camera sensors. While the
LiDAR produces a constant bitrate data stream and is therefore
easier to replicate in simulation with a fixed inter-frame gap,
the camera produces variable-bitrate data and using the same
approach as before leads to inconsistent results in hardware
and in simulation. This is illustrated in Figure 9, where we
have run the simulation with a fixed inter-frame gap and frame
size, as described in the simulation setup.

To reproduce the real behavior of the camera sensor in
the simulation, we replaced the Talker application with a
custom-built trace player application layer that generates frames
according to the real data trace captured by the testbed. Each
record in this data trace is a tuple ⟨Timestamp, FrameSize,
InterFrameGap⟩ that is used to generate frames with variable
sizes and inter-frame gaps in the simulation. In addition, we
configured all the switches in the simulation to use limited
queue sizes of 33 166 Byte each, i.e., to allow a maximum of
23 packets of 1442 Byte each.

The results obtained with this new configuration are shown
in Figure 10. They show an almost perfect match in terms of
throughput and jitter, and a very good match in terms of e2e
delay. This demonstrates the importance of accurately modeling
the input data to obtain well-calibrated simulation models.

We also noticed a packet loss of 5 % in hardware and 4 %
in the simulation. This is due to the fact that we manually
calibrated and used a fixed TAS configuration, which is not well
suited for variable-bitrate traffic. Future work could include
the design of adaptive TAS configurations, which could be
optimized by a digital twin of the in-car network.

For reproducibility, we share the trace files of LiDAR and
camera with this paper.1

VII. CONCLUSION

In this paper, we addressed the problem of creating accurate
digital replicas of modern automotive network architectures
based on automotive Ethernet and Time-Sensitive Networking
(TSN). To this end, we provided a detailed description of an
open-source TSN simulation model specifically designed to
match an accessible real-world TSN testbed that is composed
of Commercial Off-the-Shelf (COTS) hardware. We identified
several key issues that need to be considered when designing



such simulation models, and discussed potential problems that
could lead to inaccurate TSN simulation results.

In particular, we demonstrated that hardware and software
imperfections, such as those related to per-hop processing delay
or non-real-time operating systems, are often hidden by the
simulation abstractions and must be carefully considered to
accurately reflect real-world conditions. We have shown that
the data traffic generated by different real-world automotive
sensors can vary and have a substantial impact on the accuracy
of the simulation model. We published the real data traces of
two sensors (LIDAR and camera) that we used to calibrate the
TSN simulations.

As future work, we intend to take a further step towards
closing the loop between the real network and its digital
counterpart. To this end, we plan to implement and evaluate
a translation module that will be responsible for replicating
the TSN testbed configuration in the simulation module in real
time, for example by interacting with the Centralized Network
Configuration (CNC) module.
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